AI Article Synopsis

  • Water pollution from the textile industry is a significant global issue, with Malachite Green dye being a major contaminant found in textile wastewater.
  • The study focused on isolating and characterizing bacteria capable of degrading Malachite Green dye from textile effluents and optimizing growth conditions for effective dye degradation.
  • Two bacterial strains were identified (spp. CV-S1 and spp. CM-S1) that can completely decolorize Malachite Green dye at concentrations up to 15 mg/L, demonstrating their potential for use in textile wastewater treatment.

Article Abstract

Globally, water pollution from the textile industries is an alarming issue. Malachite Green dye of the triphenylmethane group is an extensively used dye in the fabric industries that is emitted through textile wastewater. This study aimed to isolate and characterize potential Malachite Green (MG) dye degrading bacteria from textile effluents. Different growth and culture parameters such as temperature, pH and dye concentration were optimized to perform the dye-degradation assay using different concentrations of MG dye in the mineral salt medium. A photo-electric-colorimeter was used to measure the decolorizing activity of bacteria at different time intervals after aerobic incubation. Two potential bacterial strains of spp. CV-S1 (accession no: MH450229) and spp. CM-S1 (accession no: MH447289) were isolated from textile effluents exhibiting potential MG dye decoloring efficiency. Further, the RAPD analysis and 16S rRNA sequencing confirmed the genetic differences of the isolated strains. sp CV-S1 and sp CM-S1 can completely decolor MG dye up to 15 mg/L under shaking condition without any requirement of sole carbon source. Thus, these two bacteria have the potency to be utilized in the textile wastewater treatment plant.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8610292PMC
http://dx.doi.org/10.1016/j.crmicr.2020.06.001DOI Listing

Publication Analysis

Top Keywords

malachite green
12
green dye
12
textile effluents
12
dye
8
bacterial strains
8
isolated textile
8
textile wastewater
8
textile
6
bioremediation malachite
4
dye bacterial
4

Similar Publications

Mixed-species Pseudomonas biofilms: a novel and sustainable strategy for malachite green dye decolorization and detoxification.

Folia Microbiol (Praha)

January 2025

Department of Microbiology, Techno India University, West Bengal EM-4 Sector-V, Salt Lake City, Kolkata, West Bengal, 700091, India.

This study investigated the application of mixed biofilms formed by two Pseudomonas strains (NAA22 and NAA23) for bio-decolorization of malachite green (MG) dye. The isolated strains displayed biofilm formation and MG decolorization capabilities. Mixed biofilms exhibited significantly greater biofilm formation and MG decolorization (94.

View Article and Find Full Text PDF

Evaluation of chitosan/diosgenin-infused manganese dioxide nanocomposite for highly effective photocatalytic and antibacterial activity.

Int J Biol Macromol

December 2024

Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 602105, Tamil Nadu, India.

Article Synopsis
  • The MnO/Dio@CS nanocomposite was studied for its ability to break down organic dyes Acid Green and Malachite Green Oxalate under visible light, achieving over 85% degradation in just 60 minutes.
  • The nanocomposite exhibited superior photocatalytic performance compared to pure MnO nanoparticles and was characterized using advanced techniques like FESEM and UV-vis spectroscopy.
  • Additionally, it demonstrated significant antibacterial properties against Bacillus subtilis and Pseudomonas aeruginosa, indicating its potential as a dual-functional material for environmental applications.
View Article and Find Full Text PDF

The aquatic ecosystem is negatively impacted by organic dye contamination, which is now one of the factors leading to environmental pollution. The present investigation involved the synthesis of nanocellulose (NC) and nanocellulose modified with NiO (NC/NiO) composite using acid hydrolysis and a one-step precipitation technique for NC and NiO, respectively. Malachite green (MG) dye was catalytically removed from an aqueous solution using the two products, which were mechanically homogenized.

View Article and Find Full Text PDF

L-tryptophan carbon dots as a fluorescent probe for malachite green detection.

Spectrochim Acta A Mol Biomol Spectrosc

December 2024

Department of Electronics, School of Electrical and Electronics Engineering, SASTRA deemed to be University, Thanjavur 613401, India. Electronic address:

Development of a rapid and sensitive detection method for hazardous dyes attracts considerable research interest. In this work, L-Tryptophan-based Carbon dots were developed as a fluorescence sensor for the detection of Malachite green (MG). Green fluorescent L-Trp-C-dots were synthesized by a simple pyrolysis technique using L-Trp as the starting precursor.

View Article and Find Full Text PDF

This work developed a novel oxidized hierarchical porous carbon (OHPC) with vesicule-like ultrathin graphitic walls via a method of air oxidation and used as an efficient adsorbent for Congo red (CR) and Malachite green (MG) removal. Results show that the OHPC2 oxidized at 400 °C possesses three-dimensional hierarchical pores with vesicule-like ultrathin graphitic walls. The prepared OHPC2 not only has a large specific surface area of 1020 m g with a high pore volume, but also has abundant oxygen-containing functional groups.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!