Background: Accumulating evidence proves that long noncoding RNA (lncRNA) plays a crucial role in maintaining genomic instability. However, it is significantly absent from exploring genomic instability-associated lncRNAs and discovering their clinical significance.

Objective: To identify crucial mutator-derived lncRNAs and construct a predictive model for prognosis and genomic instability in hepatocellular carcinoma.

Methods: First, we constructed a mutator hypothesis-derived calculative framework through uniting the lncRNA expression level and somatic mutation number to screen for genomic instability-associated lncRNA in hepatocellular carcinoma. We then selected mutator-derived lncRNA from the genome instability-associated lncRNA by univariate Cox analysis and Lasso regression analysis. Next, we created a prognosis model with the mutator-derived lncRNA signature. Furthermore, we verified the vital role of the model in the prognosis and genomic instability of hepatocellular carcinoma patients. Finally, we examined the potential relationship between the model and the mutation status of TP53.

Results: In this study, we screened 88 genome instability-associated lncRNAs and built a prognosis model with four mutator-derived lncRNAs. Moreover, the model was an independent predictor of prognosis and an accurate indicator of genomic instability in hepatocellular carcinoma. Finally, the model could catch the TP53 mutation status, and the model was a more effective indicator than the mutation status of TP53 for hepatocellular carcinoma patients.

Conclusion: This research adopted a reliable method to analyze the role of lncRNA in genomic instability. Besides, the prognostic model with four mutator-derived lncRNAs is an excellent new indicator of prognosis and genomic instability in hepatocellular carcinoma. In addition, this finding may help clinicians develop therapeutic systems.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8613502PMC
http://dx.doi.org/10.1155/2021/1205029DOI Listing

Publication Analysis

Top Keywords

genomic instability
28
hepatocellular carcinoma
24
instability hepatocellular
16
mutator-derived lncrna
12
mutator-derived lncrnas
12
prognosis genomic
12
model mutator-derived
12
mutation status
12
genomic
9
model
9

Similar Publications

Understanding the molecular landscape of nonmuscle-invasive bladder cancer (NMIBC) is essential to improve risk assessment and treatment regimens. We performed a comprehensive genomic analysis of patients with NMIBC using whole-exome sequencing (n = 438), shallow whole-genome sequencing (n = 362) and total RNA sequencing (n = 414). A large genomic variation within NMIBC was observed and correlated with different molecular subtypes.

View Article and Find Full Text PDF

Endothelial-Ercc1 DNA repair deficiency provokes blood-brain barrier dysfunction.

Cell Death Dis

January 2025

Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands.

Aging of the brain vasculature plays a key role in the development of neurovascular and neurodegenerative diseases, thereby contributing to cognitive impairment. Among other factors, DNA damage strongly promotes cellular aging, however, the role of genomic instability in brain endothelial cells (EC) and its potential effect on brain homeostasis is still largely unclear. We here investigated how endothelial aging impacts blood-brain barrier (BBB) function by using excision repair cross complementation group 1 (ERCC1)-deficient human brain ECs and an EC-specific Ercc1 knock out (EC-KO) mouse model.

View Article and Find Full Text PDF

Background: The transfer of mitochondrial DNA into the nuclear genomes of eukaryotes (Numts) has been linked to lifespan in non-human species and recently demonstrated to occur in rare instances from one human generation to the next.

Method: Here we investigated numtogenesis dynamics in humans in two ways. First, we quantified Numts in 1,187 post-mortem brain and blood samples from different individuals.

View Article and Find Full Text PDF

IDO1 inhibitor enhances the effectiveness of PD-1 blockade in microsatellite stable colorectal cancer by promoting macrophage pro-inflammatory phenotype polarization.

Cancer Immunol Immunother

January 2025

State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China.

Microsatellite stable (MSS) colorectal cancer (CRC) is a subtype of CRC that generally exhibits resistance to immunotherapy, particularly immune checkpoint inhibitors such as PD-1 blockade. This study investigates the effects and underlying mechanisms of combining PD-1 blockade with IDO1 inhibition in MSS CRC. Bioinformatics analyses of TCGA-COAD and TCGA-READ cohorts revealed significantly elevated IDO1 expression in CRC tumors, correlating with tumor mutation burden across TCGA datasets.

View Article and Find Full Text PDF

Background: Studies of the genetics of Alzheimer's disease (AD) have largely focused on single nucleotide variants and short insertions/deletions. However, much of the disease heritability has yet to be uncovered, suggesting that other forms of genetic variation promote substantial portions of genetic risk. Uncovering the genetic basis of AD can lead to new disease biomarkers and delineate disease mechanisms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!