Hydroxylation of aryl carbon-hydrogen bonds with transition metal catalysts has proven challenging when oxygen is used as the oxidant. Here, we report a palladium complex bearing a bidentate pyridine/pyridone ligand that efficiently catalyzes this reaction at ring positions adjacent to carboxylic acids. Infrared, x-ray, and computational analysis support a possible role of ligand tautomerization from mono-anionic (L,X) to neutral (L,L) coordination in the catalytic cycle of aerobic carbon-hydrogen hydroxylation reaction. The conventional site selectivity dictated by heterocycles is overturned by this catalyst, thus allowing late-stage modification of compounds of pharmaceutical interest at previously inaccessible sites.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8622180 | PMC |
http://dx.doi.org/10.1126/science.abg2362 | DOI Listing |
Molecules
December 2024
Laboratorio de Química Inorgánica y Organometálica, Departamento de Química Analítica e Inorgánica, Facultad de Ciencias Químicas, Universidad de Concepción, Edmundo Larenas 129, Casilla 160-C, Concepción 4070386, Chile.
Organic compounds with 1,3-diketone or 3-amino enone functional groups are extremely important as they can be converted into a plethora of carbo- or heterocyclic derivatives or can be used as ligands in the formation of metal complexes. Here, we have achieved the preparation of a series of non-symmetrical β-ketoenamines (O,N,N proligand) of the type (4-MeOCH)C(=O)CH=C(R)NH(Q) obtained through the Schiff base condensation of 1,3-diketones (1-anisoylacetone, 1-anisyl-3-(4-cyanophenyl)-1,3-propanedione, and 1-anisyl-3-(4,4,4-trifluorotolyl)-1,3-propanedione) functionalized with electron donor and electron-withdrawing substituents and 8-aminoquinoline (R = CH, 4-CHCN, 4-CHCF; Q = CHN). Schiff base ketoimines with a pendant quinolyl moiety were isolated as single regioisomers in yields of 22-56% and characterized with FT-IR, H NMR, and UV-visible spectroscopy, as well as single-crystal X-ray crystallography, which allowed for the elucidation of the nature of the isolated regioisomers.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
Anorganisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany.
Electromerism (aka. valence tautomerism) corresponds to the switching of electronic distributions between redox-active ligands and central elements. While this phenomenon is well established for several transition metals, the Pd(0)/Pd(II) couple could not yet be involved due to the high energy of the Pd(0) state.
View Article and Find Full Text PDFDalton Trans
December 2024
Department of Chemistry, National Changhua University of Education, Changhua 50058, Taiwan.
This study investigates the mechanism of prototropic tautomerization in metal-bound asymmetric pyrazole (R-PzH) ligands during Cu(II)-mediated PzH-MeCN coupling reactions. Intrinsic prototropic tautomerization of metal-bound ligands has not been previously documented. Various new bis-pyrazolylamidino Cu(II) complexes, [Cu(R-Pz(HNC(Me)))(ClO)], from the coupling reaction, and tetrakis pyrazole Cu(II) complexes, [Cu(R-PzH)(ClO)], with symmetric and asymmetric -monosubstituted R-PzH ligands were synthesized and characterized.
View Article and Find Full Text PDFChembiochem
December 2024
Institute of Physics, Biophysics, Martin-Luther-University Halle-Wittenberg, D-06120, Halle (Saale), Germany.
Histidine is a key amino-acid residues in proteins that can exist in three different protonation states: two different neutral tautomeric forms and a protonated, positively charged one. It can act as both donor and acceptor of hydrogen bonds, coordinate metal ions, and engage in acid/base catalysis. Human Carbonic Anhydrase II (HCA II) is a pivotal enzyme catalyzing the reversible hydration of carbon dioxide.
View Article and Find Full Text PDFChem Commun (Camb)
January 2025
Department of Chemistry, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark.
Coordination networks based on lanthanide ions entangle collective magnetic phenomena, otherwise only observed in inorganic 4f materials, and the tunable spatial and electronic structure engineering intrinsic to coordination chemistry. In this review, we discuss the use of 2D-structure-directing linear {LnI} nodes to direct the formation of polymeric coordination networks. The equatorial coordination plasticity of {LnI} results in broad structural diversity, including previously unobtainable tessellations containing motifs observed in quasicrystalline tilings.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!