A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Monitoring patients at risk for melanoma: May convolutional neural networks replace the strategy of sequential digital dermoscopy? | LitMetric

Background: Sequential digital dermoscopy (SDD) is applied for early melanoma detection by uncovering dynamic changes of monitored lesions. Convolutional neural networks (CNN) are capable of high diagnostic accuracies similar to trained dermatologists.

Objectives: To investigate the capability of CNN to correctly classify melanomas originally diagnosed by mere dynamic changes during SDD.

Methods: A retrospective cross-sectional study using image quartets of 59 high-risk patients each containing one melanoma diagnosed by dynamic changes during SDD and three nevi (236 lesions). Two validated CNN classified quartets at baseline or after SDD follow-up at the time of melanoma diagnosis. Moreover, baseline quartets were rated by 26 dermatologists. The main outcome was the number of quartets with correct classifications.

Results: CNN-1 correctly classified 9 (15.3%) and CNN-2 8 (13.6%) of 59 baseline quartets. In baseline images, CNN-1 attained a sensitivity of 25.4% (16.1%-37.8%) and specificity of 92.7% (87.8%-95.7%), whereas CNN-2 of 28.8% (18.8%-41.4%) and 75.7% (68.9%-81.4%). Expectedly, after SDD follow-up CNN more readily detected melanomas resulting in improved sensitivities (CNN-1: 44.1% [32.2%-56.7%]; CNN-2: 49.2% [36.8%-61.6%]). Dermatologists were told that each baseline quartet contained one melanoma, and on average, correctly classified 24 (22-27) of 59 quartets. Correspondingly, accepting a baseline quartet to be appropriately classified whenever the highest malignancy score was assigned to the melanoma within, CNN-1 and CNN-2 correctly classified 28 (47.5%) and 22 (37.3%) of 59 quartets, respectively.

Conclusions: The tested CNN could not replace the strategy of SDD. There is a need for CNN capable of integrating information on dynamic changes into analyses.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejca.2021.10.030DOI Listing

Publication Analysis

Top Keywords

dynamic changes
16
correctly classified
12
convolutional neural
8
neural networks
8
replace strategy
8
sequential digital
8
cnn capable
8
quartets baseline
8
sdd follow-up
8
baseline quartets
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!