A novel heterogeneous catalyst PB@MoS was successfully synthesized via facile hydrothermal processes and identified as a superior peroxymonosulfate (PMS) activator for organic pollutants degradation under visible light irradiation. The MoS nanosheet is uniformly adhered to the surface of iron-based metal-organic framework Prussian blue (PB) cube, exhibiting a tightly hydrangeas-like structure. Benefiting from strongly interfacial interaction (FeMo-sulfide) between PB and MoS, as confirmed by Fe M̈össbauer spectra and electrochemical measurement, the PB@MoS catalyst significantly accelerate the charge carrier transfer via interfacial FeMo-sulfide and thereby improve PMS activation ability to generate abundant reactive radicals. Moreover, the crucial iron active site was steadily validated by introduction of sodium oxalate trapping agent and visible light. In summary, the visible light induced Fenton-like reaction over PB@MoS catalyst promoted the Fe/Fe cycling and electron transport and further triggered the reactive species (SO, OH, O and h) productivity, realizing an extraordinarily high degradation and mineralization efficiency for various refractory organic pollutants. This work would provide a deep insight into develop heterogeneous Fe-based metal organic framework/MoS catalyst for environmental restoration and remediation by photo-Fenton reaction.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcis.2021.11.042 | DOI Listing |
Phys Chem Chem Phys
January 2025
Center for Advanced Materials Research, Beijing Normal University at Zhuhai, Zhuhai, 519087, China.
Understanding the molecular mechanism of inhibitor binding to prostate-specific membrane antigen (PSMA) is of fundamental importance for designing targeted drugs for prostate cancer. Here we designed a series of PSMA-targeting inhibitors with distinct molecular structures, which were synthesized and characterized using both experimental and computational approaches. Microsecond molecular dynamics simulations revealed the structural and thermodynamic details of PSMA-inhibitor interactions.
View Article and Find Full Text PDFACS Biomater Sci Eng
January 2025
Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian-Taiwan Science and Technology Cooperation Base of Biomedical Materials and Tissue Engineering, Engineering Research Center of Industrial Biocatalysis, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China.
Development of radiosensitizers with high-energy deposition efficiency, electron transfer, and oxidative stress amplification will help to improve the efficiency of radiotherapy. To overcome the drawbacks of radiotherapy alone, it is also crucial to design a multifunctional radiosensitizer that simultaneously realizes multimodal treatment and tumor microenvironment modulation. Herein, a multifunctional radiosensitizer based on the CuBiS-BP@PEI nanoheterostructure (NHS) for multimodal cancer treatment is designed.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Beijing Institute of Technology, School of Chemistry and Chemical Engineering, CHINA.
Carbene-metal-amide (CMA) complexes have diverse applications in luminescence, imaging and sensing. In this study, we designed and synthesized a series of CMA complexes, which were subsequently doped into a PMMA host. These materials demonstrate light-induced dynamic phosphorescence, attributed to their long intrinsic triplet state lifetime (τP,int, in the μs-ms scale), high intersystem crossing (ISC) rate constant (kISC, up to 107 s-1), and bright phosphorescence.
View Article and Find Full Text PDFJ Fluoresc
January 2025
School of Science, Jiangnan University, Wuxi, 214122, China.
In this study, nitrogen-doped carbon nanodots (N-CDs) with temperature and fluorescence sensing were prepared via hydrothermal method using L-lysine and ethylenediamine as precursors. The synthesized N-CDs exhibited spherical morphology with sizes ranging from 2.8 to 5.
View Article and Find Full Text PDFVis Comput Ind Biomed Art
January 2025
School of Engineering Medicine and School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China.
Fluorescence endoscopy technology utilizes a light source of a specific wavelength to excite the fluorescence signals of biological tissues. This capability is extremely valuable for the early detection and precise diagnosis of pathological changes. Identifying a suitable experimental approach and metric for objectively and quantitatively assessing the imaging quality of fluorescence endoscopy is imperative to enhance the image evaluation criteria of fluorescence imaging technology.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!