Chimeric liposomes decorated with P407: an alternative biomaterial for producing stealth nano-therapeutics.

J Liposome Res

Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Athens, Greece.

Published: March 2022

The aim of the present study is the development and evaluation of the physicochemical properties of chimeric hydrogenated soya phosphatidylcholine (HSPC) and egg phosphatidylcholine (EggPC) liposomes with incorporated triblock copolymer Poloxamer P407 (P407). The physicochemical assay was held in water HPLC-grade and Foetal Bovine Serum (FBS), in order to determine whether these systems can be used as drug or antigen delivery nanosystems. Dynamic and electrophoretic light scattering (DLS/ELS) techniques were used for the measurement of the hydrodynamic diameter, the polydispersity index, and the ζ-potential of the prepared nanosystems. The incorporation of the P407 resulted in a size reduction of all systems. A decrease in the hydrodynamic diameter and polydispersity index were also found as a result of increasing the storage temperature from 4 °C to 25 °C, attributed to P407. The experiments that were carried out in FBS, showed that the addition of P407 improved systems stealth properties. Concluding, we propose P407 as a promising alternative to PEG in the development of lipid nanoparticles with optimized bio- and shelf-stability.

Download full-text PDF

Source
http://dx.doi.org/10.1080/08982104.2021.1978486DOI Listing

Publication Analysis

Top Keywords

hydrodynamic diameter
8
diameter polydispersity
8
p407
7
chimeric liposomes
4
liposomes decorated
4
decorated p407
4
p407 alternative
4
alternative biomaterial
4
biomaterial producing
4
producing stealth
4

Similar Publications

Background: Spinal cord injury (SCI) treatment remains a formidable challenge, as current therapeutic approaches provide only marginal relief and fail to reverse the underlying tissue damage. This study aims to develop a novel composite material combining enzymatic nanoparticles and nerve growth factor (NGF) to modulate the immune microenvironment and enhance SCI repair.

Methods: CeMn nanoparticles (NP) and CeMn NP-polyethylene glycol (PEG) nanozymes were synthesized via sol-gel reaction and DSPE-mPEG modification.

View Article and Find Full Text PDF

The production of mammalian cells in large quantities is essential for various applications. However, scaling up cell culture using existing bioreactors poses significant technical challenges and high costs. To address this, we previously developed an innovative 3D culture system, known as the AlgTube cell culture system, for high-density cell cultivation.

View Article and Find Full Text PDF

Size-Dependent Cascade Enhancement of T-T Dual-Modal MRI in Tumors.

Adv Mater

January 2025

State Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China.

Currently, there is no conclusive evidence indicating that in situ self-assembled Gd nanostructures of varying sizes demonstrate distinct T and T signal enhancement capabilities. Furthermore, it remains uncertain whether size adjustment can effectively achieve enhanced T-T dual-modal MRI. To address these uncertainties, a two-step in situ self-assembly strategy is developed.

View Article and Find Full Text PDF

Small interfering RNA (siRNA) and messenger RNA (mRNA) have drawn considerable attention in recent years due to their ability to modulate the expression of specific disease-related proteins. However, it is difficult to find safe, robust, and effective RNA delivery systems suitable for pulmonary delivery to treat lung diseases. In this study, two cationic peptides, namely LAH4-L1 and PEGKL4, were employed as non-viral vectors for siRNA and mRNA delivery.

View Article and Find Full Text PDF

Nanocarriers have shown significant promise in the diagnosis and treatment of various diseases, utilizing a wide range of biocompatible materials such as metals, inorganic substances, and organic components. Despite diverse design strategies, key physicochemical properties, including hydrodynamic diameter, shape, surface charge, and hydrophilicity/lipophilicity, are crucial for optimizing biodistribution, pharmacokinetics, and therapeutic efficacy. However, these properties are often influenced by drug payload, presenting an ongoing challenge in developing versatile platform technologies for theranostics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!