Poly(ethylene oxide) (PEO)-based composite solid electrolytes (CSEs) are considered as one of the most promising candidates for all-solid-state lithium batteries (ASSLBs). However, a key challenge for their further development is to solve the main issues of low ionic conductivity and poor mechanical strength, which can lead to insufficient capacity and stability. Herein, β-cyclodextrin (β-CD) is first demonstrated as a multifunctional filler that can form a continuous hydrogen bond network with the ether oxygen unit from the PEO matrix, thus improving the comprehensive performances of the PEO-based CSE. By relevant characterizations, it is demonstrated that β-CD is uniformly dispersed into the PEO substrate, inducing adequate dissociation of lithium salt and enhancing mechanical strength through hydrogen bond interactions. In a Li/Li symmetric battery, the β-CD-integrated PEO-based (PEO-LiTFSI-15% β-CD) CSE works well at a critical current density up to 1.0 mA cm and retains stable lithium plating/stripping for more than 1000 h. Such reliable properties also enable its superior performance in LiFePO-based ASSLBs, with specific capacities of 123.6 and 114.0 mA h g as well as about 100 and 81.8% capacity retention over 300 and 700 cycles at 1 and 2 C (1 C = 170 mA g), respectively.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.1c18589 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
Research Center of Resource Chemistry and Energy Materials, Key Laboratory of Clay Mineral of Gansu, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P.R. China.
Clay minerals show significant potential as fillers in polymer composite solid electrolytes (CSEs), whereas the influence of their microstructures on lithium-ion (Li) transport properties remains insufficiently understood. Herein, we design advanced poly(ethylene oxide) (PEO)-based CSEs incorporating clay minerals with diverse microstructures including 1D halloysite nanotubes, 2D Laponite (Lap) nanosheets, and 3D porous diatomite. These minerals form distinct Li transport pathways at the clay-PEO interfaces due to their varied structural configurations.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Key Laboratory of Advanced Energy Materials Chemistry, College of Chemistry, Weijin Road 94, 300071, Tianjin, CHINA.
Small Methods
December 2024
Hebei Key Laboratory of Optic-Electronic Information and Materials, National & Local Joint Engineering Laboratory of New Energy Photoelectric Devices, College of Physics Science and Technology, Hebei University, Baoding, 071002, China.
Polymer-based solid electrolyte boasting ultra-high safety, energy density, mechanical strength and flexibility, attracting much attention in the field of battery applications. However, its widespread application is hindered by the low conductivity, insufficient aluminium salt dissociation, high crystallization degree, short service life, etc. To solve the above problems, a composite solid polymer electrolyte (SPE) design based on polyethylene oxide (PEO, Mw = 6 000 000) with AlCl·6HO as aluminum salt and butanedinitrile (SN) as plasticizer is proposed in this paper.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China.
Regulating lithium salt dissociation kinetics by enhancing the interaction between inorganic fillers and lithium salts is vital for enhancing the ionic conductivity in solid-state composite polymer electrolytes (CPEs). However, the influence of fillers' external electronic environments on lithium salt dissociation dynamics remains unclear. Here, we design single-atom sites in metal-organic framework fillers for poly(ethylene oxide) (PEO)-based CPEs, boosting lithium salt dissociation through an electrocatalytic strategy.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
Centre for Atomaterials and Nanomanufacturing (CAN), School of Science, RMIT University, Melbourne, VIC 3000, Australia.
The performance of solid-state lithium-metal batteries (SSLMB) is often constrained by the low ionic conductivity, narrow electrochemical window, and insufficient mechanical strength of polyethylene oxide (PEO)-based electrolytes. Inspired by the soft-outside, rigid-inside structure of starfish, we designed multifunctional "starfish-type" composite polymer electrolytes (CPEs) using electrospinning technology. These CPEs feature a three-dimensional rigid skeleton network composed of polyacrylonitrile/metal-organic frameworks/ionic liquids (PAN/MOFs/ILs), creating continuous and efficient Li transport channels: MOFs impart rigidity, PEO acts as a cushioning outer layer to enhance interfacial compatibility, and ILs reduce interfacial resistance.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!