Distinct binding kinetics of E-, P- and L-selectins to CD44.

FEBS J

Center of Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory), Beijing Key Laboratory of Engineered Construction and Mechanobiology, and CAS Center for Excellence in Complex System Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China.

Published: May 2022

AI Article Synopsis

  • Molecular-level interactions between selectins and CD44 are complex due to varied glycosylation and isoforms across cell types.
  • Experimental results showed E-selectin interactions provide strong adhesion, while P- and L-selectins facilitate stable and transient rollings, respectively.
  • Simulations revealed binding sites for CD44 on selectins, confirming E-selectin's superior binding affinity and highlighting differences in binding kinetics among the selectin types.

Article Abstract

Molecular-level selectin-cluster of differentiation 44 (CD44) interactions are far from clear because of the complexity and diversity of CD44 glycosylation and isoforms expressed on various types of cells. By combining experimental measurements and simulation predictions, the binding kinetics of three selectin members to the recombinant CD44 were quantified and the corresponding microstructural mechanisms were explored, respectively. Experimental results showed that the E-selectin-CD44 interactions mainly mediated the firm adhesion of microbeads under shear flow with the strongest rupture force. P- and L-selectins had similar interaction strength but different association and dissociation rates by mediating stable rolling and transient adhesions of microbeads, respectively. Molecular docking and molecular dynamics (MD) simulations predicted that the binding epitopes of CD44 to selectins are all located at the side face of each selectin, although the interfaces denoted as the hinge region are between lectin and epidermal growth factor domains of E-selectin, Lectin domain side of P-selectin and epidermal growth factor domain side of L-selectin, respectively. The lowest binding free energy, the largest rupture force and the longest lifetime for E-selectin, as well as the comparable values for P- and L-selectins, demonstrated in both equilibration and steered MD simulations, supported the above experimental results. These results offer basic data for understanding the functional differences of selectin-CD44 interactions.

Download full-text PDF

Source
http://dx.doi.org/10.1111/febs.16303DOI Listing

Publication Analysis

Top Keywords

binding kinetics
8
rupture force
8
epidermal growth
8
growth factor
8
domain side
8
cd44
5
distinct binding
4
kinetics l-selectins
4
l-selectins cd44
4
cd44 molecular-level
4

Similar Publications

Inosine 5'-monophosphate dehydrogenase (IMPDH) is a promising antibiotic target. This enzyme catalyzes the NAD-dependent oxidation of inosine 5'-monophosphate (IMP) to xanthosine 5'-monophosphate (XMP), which is the rate-limiting step in guanine nucleotide biosynthesis. Bacterial IMPDH-specific inhibitors have been developed that bind to the NAD site.

View Article and Find Full Text PDF

Development of a novel molecular probe for visualizing mesothelin on the tumor via positron emission tomography.

Eur J Nucl Med Mol Imaging

January 2025

Institute of Radiation Medicine, Fudan University, Xietu Road 2094, Shanghai, 200032, China.

Objectives: Mesothelin (MSLN) is an antigen that is overexpressed in various cancers, and its interaction with tumor-associated cancer antigen 125 plays a multifaceted role in tumor metastasis. The serum MSLN expression level can be detected using enzyme-linked immunosorbent assay; however, non-invasive visualization of its expression at the tumor site is currently lacking. Therefore, the aim of this study was to develop a molecular probe for imaging MSLN expression through positron emission tomography (PET).

View Article and Find Full Text PDF

An understanding of proton transfer and migration at the surfaces of solid metal oxides and related molecular polyoxometalates (POMs) and metal alkoxides is crucial for the development of reactivity involving protonation or the absorption/binding of water. In this work, the hydrolysis of alkoxido Ti- and Sn-substituted Lindqvist [(MeO)MWO] (M = Ti, ; M = Sn, ) and Keggin [(MeO)MPWO] (M = Ti, ; M = Sn, ) type polyoxometalates (POMs) to hydroxido derivatives and subsequent condensation to μ-oxido species has been investigated in detail to provide insight into proton transfer reactions in these molecular metal oxide systems. Solution NMR studies revealed the dependence of reactions not only on the nature of the heteroatom (Ti or Sn) but also on the type of lacunary (W or PW) POM and also on the solvent (MeCN or DMSO).

View Article and Find Full Text PDF

Herein, we demonstrate a two-in-one strategy for efficient neutral electrosynthesis of H2O2 via two-electron oxygen reduction reaction (2e-ORR), achieved by synergistically fine-modulating both the local microenvironment and electronic structure of indium (In) single atom (SA) sites. Through a series of finite elemental simulations and experimental analysis, we highlight the significant impact of phosphorous (P) doping on an optimized 2D mesoporous carbon carrier, which fosters a favorable microenvironment by improving the mass transfer and O2 enrichment, subsequently leading to an increased local pH levels. Consequently, an outstanding 2e-ORR performance is observed in neutral electrolytes, achieving over 95% selectivity for H2O2 across a broad voltage range of 0.

View Article and Find Full Text PDF

Flometoquin (FLO) is a novel quinoline-type insecticide that elicits a quick knock-down effect against target pests; however, its mode of action (MoA) remains unknown. In this study, we investigated its MoA systematically, using varying biochemical techniques. Since FLO-treated insects exhibited symptoms similar to those induced by respiratory inhibitors, we examined the effect of FLO on respiratory enzyme complexes using mitochondria isolated from different insects (housefly, diamondback moth, and western flower thrips).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!