Impact of parasitoid-associated polydnaviruses on plant-mediated herbivore interactions.

Curr Opin Insect Sci

University of Palermo, Department of Agricultural, Food And Forest Sciences (SAAF), Viale delle Scienze, 90128, Palermo, Italy. Electronic address:

Published: February 2022

Insect herbivores interact via plant-mediated interactions in which one herbivore species induces changes in plant quality that affects the performance of a second phytophagous insect that shares the food plant. These interactions are often asymmetric due to specificity in induced plant responses to herbivore attack, amount of plant damage, elicitors in herbivore saliva and plant organ damaged by herbivores. Parasitoids and their symbiotic polydnaviruses alter herbivore physiology and behaviour and may influence how plants respond to parasitized herbivores. We argue that these phenomena affect plant-mediated interactions between herbivores. We identify that the extended phenotype of parasitoid polydnaviruses is an important knowledge gap in interaction networks of insect communities.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cois.2021.11.004DOI Listing

Publication Analysis

Top Keywords

plant-mediated interactions
8
herbivore
5
plant
5
impact parasitoid-associated
4
parasitoid-associated polydnaviruses
4
polydnaviruses plant-mediated
4
plant-mediated herbivore
4
interactions
4
herbivore interactions
4
interactions insect
4

Similar Publications

Background: Entomopathogenic fungi are increasingly used as bio-inoculants to enhance crop growth and resistance. When applied to rhizosphere soil, they interact with resident soil microbes, which can affect their ability to colonize and induce resistance in plants as well as modify the structure of the resident soil microbiome, either directly through interactions in the rhizosphere or indirectly, mediated by the plant. The extent to which such direct versus indirect interactions between bio-inoculants and soil microbes impact microbe-induced resistance in crops remains unclear.

View Article and Find Full Text PDF

In recent decades, evidence of interactions between aboveground and belowground (i.e., soil) subsystems has accumulated.

View Article and Find Full Text PDF

Enhanced association of whitefly-begomovirus competence with plant-mediated mutualism.

Pest Manag Sci

December 2024

Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China.

Background: Vector-borne viruses often manipulate plant defenses against insect vectors, thereby impacting vector population dynamics and in turn virus spread. However, the factors regulating the outcome of insect vector-virus-plant tripartite interactions, such as the feature of virus-vector combinations, are understudied.

Results: Using eight whitefly (Bemisia tabaci)-begomovirus combinations exhibiting different degrees of competence, namely virus transmission efficiency, we examined the association between whitefly-begomovirus competence and plant-mediated mutualism.

View Article and Find Full Text PDF

Impact of Beneficial Microorganisms Inoculated Cotton Plants on Spodoptera exigua (Lepidoptera: Noctuidae).

Neotrop Entomol

December 2024

Dept of Plant Protection, Faculty of Agriculture, Van Yüzüncü Yıl Univ, Van, Türkiye.

This study discusses plant-mediated effects of beneficial soil-borne microorganisms on population growth parameters of Spodoptera exigua (Lepidoptera: Noctuidae), a major cotton pest. In particular, we investigated the impact of these microorganisms on oxidative stress, chlorophyll content, and sugar and protein levels in cotton plants, and how these changes in the plant affect the survival, development, reproduction, and ultimately population growth of the pest. A longer preadult period, lower preadult survival rate, and lower reproduction were obtained for the pest cohort feeding on treated plants, which resulted in lower population parameters, i.

View Article and Find Full Text PDF

Soil-borne microorganisms can impact leaf-chewing insect fitness by modifying plant nutrition and defence. Whether the altered insect performance is linked to changes in microbial partners of caterpillars remains unclear. We investigated the effects of root inoculation with soil bacteria or fungi on the gut bacterial community and biomass of the folivore Spodoptera exigua.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!