Background: Salmonella enterica serovar Typhimurium (S. Typhimurium) is a common food-borne pathogen, which has the ability to infect a wide range of hosts. The increasing emergence of drug-resistant strains urgently requires new alternative therapies. Eugenol has been shown to be very effective against drug-resistant strains of Gram-negative and Gram-positive bacteria. The purpose of this study is to explore the effects of eugenol on the virulence factors and pathogenicity of S. Typhimurium.
Methods: The antibacterial activity of eugenol was investigated via the changes of cell morphology, fimbriae related-genes and virulence factors of S. Typhimurium, then the pathogenicity of S. Typhimurium pretreated by eugenol to chickens was evaluated.
Results: Susceptibility testing showed that eugenol possessed significant antimicrobial activity. Scanning electron microscope analysis showed eugenol treatment deformed the morphology with damaged fimbriae structure of S. Typhimurium. Real time PCR assay confirmed eugenol significantly down-regulated the expressions of virulence factors (hilA, hilD, sipA, sipC, spiC, misL) of Type III secretion system (T3SS) and adherence genes (fimA, fimH, fimD, fimY, fimZ, stm0551) of Type I fimbriae (TIF). Animal experiment proved that the pathogenicity of S. Typhimurium exposed by eugenol was reduced, which was evidenced by the higher survival rate, weight gains and organs indexes, the lower bacterial loads in organs. Meanwhile, the duodenal histopathological changes were mitigated, with a significantly decline in the expressions of TNF-α, IL-6 and IL-18.
Conclusion: In summary, eugenol pretreatment may alleviate the pathogenicity of the S. Typhimurium to chickens via wrecking the fimbriae and inhibiting the mRNA expressions of virulence factors and adhesion molecules. These data dedicated the potential mechanisms of eugenol against S. Typhimurium in vitro.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.micpath.2021.105314 | DOI Listing |
Pol J Vet Sci
December 2024
Department of Customs Inspection and Quarantine, Shanghai Customs College, Shanghai, China.
, commonly known as , is a critical zoonotic pathogen that significantly reduces milk yield and product quality and poses a significant risk to public health. Although is increasingly recognised as a principal agent causing milkborne infections, research dedicated to this pathogen in dairy cattle has been less extensive than that of other pathogens. This study aimed to examine the antibiotic resistance profiles of derived from dairy cows and assess its pathogenicity using validated in vivo models.
View Article and Find Full Text PDFInt J Microbiol
December 2024
Key Laboratory of Birth Defects, Women's & Children's Health Care Hospital of Linyi, Linyi 276000, Shandong, China.
To understand the colonization status of Group B Streptococcus (GBS) in the reproductive tract of pregnant women in the Linyi region, the drug resistance, genotype distribution, and molecular epidemiological characteristics of GBS, and to explore the high-risk factors for GBS infection in late-stage pregnant women. A total of 3269 pregnant women at 35-37 weeks of gestation who visited the Obstetrics Department of Linyi Maternal and Child Health Hospital from January 2019 to December 2021 were selected as the study subjects. Vaginal and rectal swabs were collected for GBS culture.
View Article and Find Full Text PDFWorld J Gastroenterol
December 2024
Center for Excellence in Post Harvest Technologies, North Carolina Agricultural and Technical State University, The North Carolina Research Campus, Kannapolis, NC 28081, United States.
The gut microbiome plays a key role in the pathogenesis and disease activity of inflammatory bowel disease (IBD). While research has focused on the bacterial microbiome, recent studies have shifted towards host genetics and host-fungal interactions. The mycobiota is a vital component of the gastrointestinal microbial community and plays a significant role in immune regulation.
View Article and Find Full Text PDFFront Cell Infect Microbiol
December 2024
Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo, Brazil.
Pathogenic are spirochetes that cause leptospirosis, a worldwide zoonotic disease. Leptospirosis affects humans and animals, with approximately 1 million human infections and 60,000 deaths per year. The diversity of leptospiral strains and serovars allied to the fact that pathogenesis is not yet fully understood, make the development of an effective vaccine against leptospirosis a challenge.
View Article and Find Full Text PDFCan J Infect Dis Med Microbiol
December 2024
Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
The rise in multidrug-resistant pathogens poses a formidable challenge in treating hospital-acquired infections, particularly those caused by . Biofilm formation is a critical factor contributing to antibiotic resistance, enhancing bacterial adherence and persistence. strains vary in virulence factors, influencing their pathogenicity and resistance profiles.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!