Golgi Phosphoprotein 3 Confers Radioresistance via Stabilizing EGFR in Lung Adenocarcinoma.

Int J Radiat Oncol Biol Phys

Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, PR China; Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, PR China; Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions and School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Suzhou, PR China. Electronic address:

Published: April 2022

Purpose: Radioresistance is a major cause of treatment failure in tumor radiation therapy, and the underlying mechanisms of radioresistance are still elusive. Golgi phosphoprotein 3 (GOLPH3) has been reported to associate tightly with cancer progression and chemoresistance. Herein, we explored whether GOLPH3 mediated radioresistance of lung adenocarcinoma (LUAD) and whether targeted suppression of GOLPH3 sensitized LUAD to radiation therapy.

Methods And Materials: The aberrant expression of GOLPH3 was evaluated by immunohistochemistry in LUAD clinical samples. To evaluate the association between GOLPH3 and radioresistance, colony formation and apoptosis were assessed in control and GOLPH3 knockdown cells. γ-H2AX foci and level determination and micronucleus test were used to analyze DNA damage production and repair. The rescue of GOLPH3 knockdown was then performed by exogenous expression of small interfering RNA-resistant mutant GOLPH3 to confirm the role of GOLPH3 in DNA damage repair. Mechanistically, the effect of GOLPH3 on regulating stability and nuclear accumulation of epidermal growth factor receptor (EGFR) and the activation of DNA-dependent protein kinase (DNA-PK) were investigated by quantitative real-time polymerase chain reaction, western blot, immunofluorescence, and coimmunoprecipitation. The role of GOLPH3 in vivo in radioresistance was determined in a xenograft model.

Results: In tumor tissues of 33 patients with LUAD, the expression of GOLPH3 showed significant increases compared with those in matched normal tissues. Knocking down GOLPH3 reduced the clonogenic capacity, impaired double-strand break (DSB) repair, and enhanced apoptosis after irradiation. In contrast, reversal of GOLPH3 depletion rescued the impaired repair of radiation-induced DSBs. Mechanistically, loss of GOLPH3 accelerated the degradation of EGFR in lysosome, causing the reduction in EGFR levels, thereby weakening nuclear accumulation of EGFR and attenuating the activation of DNA-PK. Furthermore, adenovirus-mediated GOLPH3 knockdown could enhance the ionizing radiation response in the LUAD xenograft model.

Conclusions: GOLPH3 conferred resistance of LUAD to ionizing radiation via stabilizing EGFR, and targeted suppression of GOLPH3 might be considered as a potential therapeutic strategy for sensitizing LUAD to radiation therapy.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijrobp.2021.11.023DOI Listing

Publication Analysis

Top Keywords

golph3
18
golph3 knockdown
12
golgi phosphoprotein
8
stabilizing egfr
8
lung adenocarcinoma
8
radiation therapy
8
targeted suppression
8
suppression golph3
8
luad radiation
8
expression golph3
8

Similar Publications

With a high mortality rate, colon cancer (CC) is the third most common malignant tumor worldwide. The primary causes are thought to be the high invasiveness and migration of CC cells. The functions of Golgi phosphoprotein 3 (GOLPH3), stress-induced phosphoprotein 1 (STIP1), and the signal transducer and activator of transcription 3 (STAT3) signaling pathway in the invasion and migration of CC cells were examined in this study.

View Article and Find Full Text PDF

Molecular Insights into the Regulation of GNPTAB by TMEM251.

bioRxiv

December 2024

Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA.

In vertebrates, newly synthesized lysosomal enzymes traffick to lysosomes through the mannose-6-phosphate (M6P) pathway. The Golgi membrane protein TMEM251 was recently discovered to regulate lysosome biogenesis by controlling the level of GlcNAc-1-phosphotransferase (GNPT). However, its precise function remained unclear.

View Article and Find Full Text PDF
Article Synopsis
  • Glycosylation is crucial for modifying lipids and sorting proteins, with its regulation involving a unique distribution of enzymes in the Golgi and the action of SPPL3.
  • In cells lacking the retention factor LYSET/TMEM251, there is increased secretion of a Golgi protein, B4GALT5, due to disrupted M6P tagging, which typically marks proteins for lysosomal degradation.
  • The study reveals that GOLPH3 and GOLPH3L adaptors play a critical role in stabilizing the LYSET-GNPT complex, maintaining proper Golgi function, and ensuring efficient lysosomal enzyme processing.
View Article and Find Full Text PDF

ARMH3 is an ARL5 effector that promotes PI4KB-catalyzed PI4P synthesis at the trans-Golgi network.

Nat Commun

November 2024

Division of Neurosciences and Cellular Structure, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.

ARL5 is a member of the ARF family of small GTPases that is recruited to the trans-Golgi network (TGN) by another ARF-family member, ARFRP1, in complex with the transmembrane protein SYS1. ARL5 recruits its effector, the multisubunit tethering complex GARP, to promote SNARE-dependent fusion of endosome-derived retrograde transport carriers with the TGN. To further investigate the function of ARL5, we sought to identify additional effectors.

View Article and Find Full Text PDF

Cisplatin resistance is common in non‑small cell lung cancer (NSCLC); however, the molecular mechanisms remain unclear. The present study aimed to identify a new function of Golgi phosphoprotein 3 (GOLPH3) in NSCLC‑associated cisplatin resistance. Using A549 human NSCLC cells and the cisplatin‑resistant variant, stable cell lines with GOLPH3 knockdown or overexpression were established using lentiviral vectors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!