Atomic-level insight into effect of substrate concentration and relative humidity on photocatalytic degradation mechanism of gaseous styrene.

Chemosphere

Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China. Electronic address:

Published: March 2022

Substrate concentration and relative humidity (RH) impact the photocatalytic efficiency of industrial aromatic hydrocarbons, but how they influence intermediate formation and degradation pathway remains unclear. With the help of oxygen isotope tracing method, the effects of these two environmental parameters on degradation mechanism of styrene were revealed at atomic level. Increasing styrene concentration favored product formation, which was however inhibited by RH elevation. Gaseous products were not directly formed in gaseous phase, but originated from desorption of interfacial intermediates. The volatile aldehydes and furans further exchanged their O with O in HO. Increase of RH showed higher enhancement on O distribution in all products and pathways than that of substrate concentration. Low RH preferred high generation of O and O, dominating reaction to form 1-phenyl-1,2-ethandiol, 2-hydroxy-1-phenyl-ethanon and phenylglyoxal monohydrate in sequence. Successive production of benzyl alcohol, benzaldehyde and benzoic acid through the reaction of styrene with promoted OH by increasing RH became predominant. Hydration was firstly observed and confirmed as an important gaseous transformation step of aldehyde and furan products. Our findings provide a deep insight into photocatalytic degradation mechanism of aromatic hydrocarbons regulated by environmental parameters to further improve their industrial purification efficiency, and are helpful predicting environmental geochemistry fate of organics and preventing their negative impact on natural environment.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2021.133074DOI Listing

Publication Analysis

Top Keywords

substrate concentration
12
degradation mechanism
12
concentration relative
8
relative humidity
8
photocatalytic degradation
8
aromatic hydrocarbons
8
environmental parameters
8
atomic-level insight
4
insight substrate
4
concentration
4

Similar Publications

Improving Understanding of Fexofenadine Pharmacokinetics to Assess Pgp Phenotypic Activity in Older Adult Patients Using Population Pharmacokinetic Modeling.

Clin Pharmacokinet

January 2025

Clinical Pharmacology and Toxicology Service, Anesthesiology, Pharmacology and Intensive Care Department, Geneva University Hospitals, 4 Rue Gabrielle Perret-Gentil, 1205, Geneva, Switzerland.

Background And Objective: Fexofenadine is commonly used as a probe substrate to assess P-glycoprotein (Pgp) activity. While its use in healthy volunteers is well documented, data in older adult and polymorbid patients are lacking. Age- and disease-related physiological changes are expected to affect the pharmacokinetics of fexofenadine.

View Article and Find Full Text PDF

The hydrolysis of proteins by proteases (proteolysis) plays a significant role in biology and food science. Despite the importance of proteolysis, a universal quantitative model of this phenomenon has not yet been created. This review considers approaches to modeling proteolysis in a batch reactor that take into account differences in the hydrolysis of the individual peptide bonds, as well as the limited accessibility (masking) for the enzymes of some hydrolysis sites in the protein substrate.

View Article and Find Full Text PDF

cyclic lipopeptides (CLP), part of the three main families-surfactins, iturins, and fengycins-are secondary metabolites with a unique chemical structure that includes both peptide and lipid components. Being amphiphilic compounds, CLPs exhibit antimicrobial activity in vitro, damaging the membranes of microorganisms. However, the concentrations of CLPs used in vitro are difficult to achieve in natural conditions.

View Article and Find Full Text PDF

The black soldier fly, , is a voracious scavenger of various organic materials; therefore, it could be exploited as a biological system for processing daily food waste. In order to survey novel hydrolytic enzymes, we constructed a fosmid metagenome library using unculturable intestinal microorganisms from . Through functional screening of the library on carboxymethyl cellulose plates, we identified a fosmid clone, the product of which displayed hydrolytic activity.

View Article and Find Full Text PDF

The effect of solution pH on the formation and surface structure of 2-pyrazinethiolate (2-PyzS) self-assembled monolayers (SAMs) formed by the adsorption of 2-mercaptopyrazine (2-PyzSH) on Au(111) was investigated using scanning tunneling microscopy (STM) and X-ray photoelectron microscopy (XPS). Molecular-scale STM observations clearly revealed that 2-PyzS SAMs at pH 2 had a short-range ordered phase of (2√3 × √21)R30° structure with a standing-up adsorption structure. However, 2-PyzS SAMs at pH 8 had a very unique long-range ordered phase, showing a "ladder-like molecular arrangement" with bright repeating rows.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!