Evaluation of β-adrenergic ligands for development of pharmacological heart failure and transparency models in zebrafish.

Toxicol Appl Pharmacol

Department of Biopharmacy, Medical University of Lublin, 4a Chodzki Street, 20-093 Lublin, Poland. Electronic address:

Published: January 2022

Cardiovascular toxicity represents one of the most common reasons for clinical trial failure. Consequently, early identification of novel cardioprotective strategies could prevent the later-stage drug-induced cardiac side effects. The use of zebrafish (Danio rerio) in preclinical studies has greatly increased. High-throughput and low-cost of assays make zebrafish model ideal for initial drug discovery. A common strategy to induce heart failure is a chronic β-adrenergic (βAR) stimulation. Herein, we set out to test a panel of βAR agonists to develop a pharmacological heart failure model in zebrafish. We assessed βAR agonists with respect to the elicited mortality, changes in heart rate, and morphological alterations in zebrafish larvae according to Fish Embryo Acute Toxicity Test. Among the tested βAR agonists, epinephrine elicited the most potent onset of heart stimulation (EC = 0.05 mM), which corresponds with its physiological role as catecholamine. However, when used at ten-fold higher dose (0.5 mM), the same compound caused severe heart rate inhibition (-28.70 beats/min), which can be attributed to its cardiotoxicity. Further studies revealed that isoetharine abolished body pigmentation at the sublethal dose of 7.50 mM. Additionally, as a proof of concept that zebrafish can mimic human cardiac physiology, we tested βAR antagonists (propranolol, carvedilol, metoprolol, and labetalol) and verified that they inhibited fish heart rate in a similar fashion as in humans. In conclusion, we proposed two novel pharmacological models in zebrafish; i.e., epinephrine-dependent heart failure and isoetharine-dependent transparent zebrafish. We provided strong evidence that the zebrafish model constitutes a valuable tool for cardiovascular research.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.taap.2021.115812DOI Listing

Publication Analysis

Top Keywords

heart failure
16
βar agonists
12
heart rate
12
zebrafish
9
heart
8
pharmacological heart
8
models zebrafish
8
zebrafish model
8
tested βar
8
failure
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!