A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Injectable polydimethylsiloxane microfiller coated with zwitterionic polymer for enhanced biocompatibility. | LitMetric

Injectable polydimethylsiloxane microfiller coated with zwitterionic polymer for enhanced biocompatibility.

Colloids Surf B Biointerfaces

Department of Materials Science and Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea. Electronic address:

Published: February 2022

Silicone-based fillers have been applied in several branches of medicine, such as soft tissue augmentation, because of their stability and durability. However, the inherently hydrophobic surfaces of silicone occasionally cause excessive deposition of the fibrous matrix in vivo, leading to severe fibrosis. In this study, we evaluated the use of a zwitterionic copolymer to offer a facile surface treatment method for silicone-based fillers and performed a preclinical trial of the formulation as-prepared. The copolymer has amphiphilic moieties, which act as macromolecular surfactants that can functionalize and stabilize the silicone particles during fabrication. The effectiveness and safety of the particle filler were evaluated histologically by scoring the peri-implant tissues into previously defined categories. Our results suggest that zwitterion-coated silicone fillers can inhibit protein adsorption, and thus, help attenuate foreign body reactions in a rat model. This demonstrates their potential for wide application in different fields within the discipline of medicine.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.colsurfb.2021.112223DOI Listing

Publication Analysis

Top Keywords

silicone-based fillers
8
injectable polydimethylsiloxane
4
polydimethylsiloxane microfiller
4
microfiller coated
4
coated zwitterionic
4
zwitterionic polymer
4
polymer enhanced
4
enhanced biocompatibility
4
biocompatibility silicone-based
4
fillers applied
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!