Objectives: Effective therapy for non-small-cell lung cancer (NSCLC) depends on morphological and genomic classification, with comprehensive screening for guideline-recommended biomarkers critical to guide treatment. Companion diagnostics, which provide robust genotyping results, represent an important component of personalized oncology. We evaluated the clinical validity of Guardant360 CDx as a companion diagnostic for sotorasib for detection of KRAS p.G12C, an important oncogenic NSCLC driver mutation.

Materials And Methods: KRAS p.G12C was tested in NSCLC patients from CodeBreaK100 (NCT03600833) in pretreatment plasma samples using Guardant360 CDx liquid biopsy and archival tissue samples using therascreen® KRAS RGQ polymerase chain reaction (PCR) kit tissue testing. Matched tissue and plasma samples were procured from other clinical trials or commercial vendors, and results were compared. Demographics and clinical characteristics and objective response rate (ORR) were evaluated.

Results: Of 126 CodeBreaK patients, 112 (88.9%) were tested for KRASp.G12C mutations with Guardant360 CDx. Among 189 patients in the extended analysis cohort, the positive and negative percent agreement (95% CI) for Guardant360 CDx plasma testing relative to therascreen® KRAS RGQ PCR kit tissue testing were 0.71 (0.62, 0.79) and 1.00 (0.95, 1.00), respectively; overall percent agreement (95% CI) was 0.82 (0.76, 0.87). TP53 co-mutations were the most common regardless of KRAS p.G12C status (KRAS p.G12C-positive, 53.4%; KRAS p.G12C-negative, 45.5%). STK11 was co-mutated in 26.1% of KRAS p.G12C-positive samples. The ORR was similar among patients selected by plasma and tissue testing.

Conclusion: Comprehensive genotyping for all therapeutic targets including KRAS p.G12C is critical for management of NSCLC. Liquid biopsy using Guardant360 CDx has clinical validity for identification of patients with KRASp.G12C-mutant NSCLC and, augmented by tissue testing methodologies as outlined on the approved product label, will identify patients for treatment with sotorasib.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10325630PMC
http://dx.doi.org/10.1016/j.lungcan.2021.10.007DOI Listing

Publication Analysis

Top Keywords

guardant360 cdx
24
kras pg12c
16
tissue testing
12
kras
9
companion diagnostic
8
diagnostic sotorasib
8
clinical validity
8
plasma samples
8
liquid biopsy
8
therascreen® kras
8

Similar Publications

Article Synopsis
  • Amivantamab-lazertinib demonstrated better progression-free survival (PFS) rates than osimertinib in patients with EGFR-mutant advanced non-small-cell lung cancer (NSCLC), particularly benefiting those with TP53 mutations and detectable circulating tumor DNA (ctDNA).
  • A study involving 858 treatment-naive patients showed that amivantamab-lazertinib outperformed osimertinib in various high-risk subgroups, including individuals with baseline liver metastases and those who did not clear ctDNA during treatment.
  • Results indicated significant improvements in median PFS for patients treated with amivantamab-lazertinib across multiple categories, showcasing its potential as a more effective option for managing advanced
View Article and Find Full Text PDF

Circulating Tumor DNA Profiling in Liver Transplant for Hepatocellular Carcinoma, Cholangiocarcinoma, and Colorectal Liver Metastases: A Programmatic Proof of Concept.

Cancers (Basel)

February 2024

Department of Hepato-Pancreato-Biliary & Liver Transplant Surgery, Digestive Diseases and Surgery Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA.

Introduction: Circulating tumor DNA (ctDNA) is emerging as a promising, non-invasive diagnostic and surveillance biomarker in solid organ malignancy. However, its utility before and after liver transplant (LT) for patients with primary and secondary liver cancers is still underexplored.

Methods: Patients undergoing LT for hepatocellular carcinoma (HCC), cholangiocarcinoma (CCA), and colorectal liver metastases (CRLM) with ctDNA testing were included.

View Article and Find Full Text PDF

Comprehensive genotyping is necessary to identify therapy options for patients with advanced cancer; however, many cancers are not tested, partly because of tissue limitations. Next-generation sequencing (NGS) liquid biopsies overcome some limitations, but clinical validity is not established and adoption is limited. Herein, clinical bridging studies used pretreatment plasma samples and data from FLAURA (NCT02296125; n = 441) and AURA3 (NCT02151981; n = 450) pivotal studies to demonstrate clinical validity of Guardant360 CDx (NGS LBx) to identify patients with advanced EGFR mutant non-small-cell lung cancer who may benefit from osimertinib.

View Article and Find Full Text PDF

Background: The current treatment paradigm of imatinib-resistant metastatic gastrointestinal stromal tumor (GIST) does not incorporate KIT/PDGFRA genotypes in therapeutic drug sequencing, except for PDGFRA exon 18-mutant GIST that is indicated for avapritinib treatment. Here, circulating tumor DNA (ctDNA) sequencing was used to analyze plasma samples prospectively collected in the phase III VOYAGER trial to understand how the KIT/PDGFRA mutational landscape contributes to tyrosine kinase inhibitor (TKI) resistance and to determine its clinical validity and utility.

Patients And Methods: VOYAGER (N = 476) compared avapritinib with regorafenib in patients with KIT/PDGFRA-mutant GIST previously treated with imatinib and one or two additional TKIs (NCT03465722).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!