Hypothesis: Understanding deagglomeration, agglomerate formation and structure for very small nanoparticles (NPs), due to their more facile agglomeration, is critical for processing or tailoring agglomerates for nanostructured materials. We propose that by controlling and fine-tuning the interplay of agglomeration (colloidal interaction) and deagglomeration (hydrodynamic forces), the design of agglomerate size, microstructure and morphology is possible even for very small NPs.

Experiments: Here, we investigate very small SnO NPs (10 nm) generated in the gas phase as model system. Small-angle X-ray scattering (SAXS) and dynamic light scattering (DLS) are used to study dispersions in aqueous media across the entire pH range (2-12) at various NaCl concentrations treated with ultrasound. Parallel to size and size distribution, agglomerate morphology and microstructure are analyzed by means of the mass fractal dimension, d and modeled with ab initio shape simulations. The critical coagulation concentration (CCC) is determined for the alkaline region where the SnO NPs are highly charged.

Findings: Quantitative analysis of SAXS and DLS data reveals that size and size distribution of the agglomerates depend similarly on the electrostatic interaction influenced by pH and salinity as observed by the zeta potential. In contrast d is mainly influenced by the salt concentration. Ab initio shape simulations support these experimental findings.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2021.10.194DOI Listing

Publication Analysis

Top Keywords

sno nps
8
size size
8
size distribution
8
initio shape
8
shape simulations
8
size
5
unraveling agglomeration
4
agglomeration deagglomeration
4
deagglomeration aqueous
4
aqueous colloidal
4

Similar Publications

Synthesis of Tin Oxide Nanoparticles from E-Waste for Photocatalytic Mixed-Dye Degradation under Sunlight.

ACS Omega

December 2024

Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Chennai Campus, Vandalur-Kelambakkam Road, Chennai, Tamil Nadu 600127, India.

Electronic waste (e-waste) has become a significant environmental concern worldwide due to the rapid advancement of technology and short product lifecycles. Waste-printed electronic boards (WPCBs) contain valuable metals and semiconductors; among them, tin can be recycled and repurposed for sustainable material production. This study presents a potential ecofriendly methodology for the recovery of tin from WPCBs in the form of tin oxide nanostructured powders.

View Article and Find Full Text PDF

Self-assembled peptide microtubes (SPMTs)/SnO sensors for enhanced room-temperature gas detection under visible light illumination.

Talanta

December 2024

Engineering Research Center of Smart Microsensors and Microsystems, Ministry of Education, College of Electronics and Information, Hangzhou Dianzi University, Hangzhou, Zhejiang, 310018, China; China-Israel Polypeptide Device and Application Technology Joint Research Center, Hangzhou, 310027, China. Electronic address:

Nitrogen dioxide (NO) is an important contaminant that poses a severe threat to environmental sustainability. Traditional inorganic NO gas detectors are generally used under harsh operating conditions and employ environmentally unfriendly resources, thus preventing widespread practical applications. Herein, self-assembled peptide microtubes (SPMTs) are combined with SnO nanoparticles (NPs) to develop a bioinspired NO gas sensor.

View Article and Find Full Text PDF

Oxygenated VOC Detection Using SnO Nanoparticles with Uniformly Dispersed BiO.

Nanomaterials (Basel)

December 2024

Department of Advanced Materials Science and Engineering, Faculty of Engineering Sciences, Kyushu University, Kasuga 816-8580, Fukuoka, Japan.

BiO particles are introduced as foreign additives onto SnO nanoparticles (NPs) surfaces for the efficient detection of oxygenated volatile organic compounds (VOCs). BiO-loaded SnO materials are prepared via the impregnation method followed by calcination treatment. The abundant BiO/SnO interfaces are constructed by the uniform dispersion of BiO particles on the SnO surface.

View Article and Find Full Text PDF

Dual-mode detection of human immunoglobulin via copper oxide nanozyme catalysis fluorescent species generation and photoelectrochemical alteration in ZnInS/SnO-based system.

Anal Chim Acta

January 2025

Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education, China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, PR China. Electronic address:

Human immunoglobulin (HIgG) has gained recognition as a crucial biomarker diagnosing and treating various diseases, particularly in identifying elevated serum levels in conditions like measles and pneumococcal disease. Traditional detection methods, however, are often hindered by inefficiencies, high costs, and potential inaccuracies, underscoring the urgent need for more sensitive, efficient, accurate, and self-calibration methods for HIgG. Here, a novel ZnInS/SnO composites was synthesized, featuring uniformly dispersed SnO nanoparticles on the flower-like ZnInS structure, resulting in a type II heterojunction that promotes the separation and transfer of photogenerated carriers.

View Article and Find Full Text PDF
Article Synopsis
  • - Atomically precise metal nanoclusters (NCs) are interesting for their unique structures and catalytic potential, but they have issues like instability and self-aggregation.
  • - This research presents a method to stabilize metal NCs by anchoring them to a metal oxide matrix, creating a hollow core-shell structure through thermal treatment.
  • - The resulting metal NPs@metal oxide heterostructures show improved catalytic activity and stability for reducing aromatic nitro compounds, suggesting a new approach to utilize the instability of metal NCs in catalysis.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!