Mimicking the natural photosynthesis process to convert carbon dioxide into value-added chemicals is vital to solving both the climate crisis worldwide and the depletion of fossil fuels. Herein, we explore the synthesis of 2D FAPbBr nanoplate combined with 2D TiC nanosheet to form a 2D/2D FAPbBr/TiC Schottky heterojunction using facile hot-injection and in-situ growth approaches. The Schottky heterojunction of FAPbBr/TiC over large interfacial contact provides abundant channels for transferring photogenerated carriers from FAPbBr nanoplate to TiC nanosheet. The experimental results showed a CO yield of 93.82 μmol·g·h with ethyl acetate/deionization water as a sacrificial reagent for FAPbBr/TiC composite, which was 1.25-fold enhancement that on pristine FAPbBr nanoplates. The large 2D heterointerface can efficiently accelerate the spatial separation and transfer of photogenerated carriers and result in the superior photocatalytic activity and favorable stability of FAPbBr/TiC photocatalysts, which are proved by in-situ X-ray photoelectron spectroscopy, photoluminescence, transient absorption spectra, and Mott-Schottky measurement. Thus, this work unveils that 2D/2D Schottky heterostructures would significantly improve the reaction activities of halide perovskite-based photocatalysts.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2021.11.094DOI Listing

Publication Analysis

Top Keywords

schottky heterojunction
12
2d/2d schottky
8
in-situ growth
8
fapbbr nanoplate
8
tic nanosheet
8
photogenerated carriers
8
fapbbr/tic
5
heterojunction in-situ
4
growth fapbbr/tic
4
fapbbr/tic composites
4

Similar Publications

Traditional photocatalysts often have limited efficiency due to the high recombination rate of photogenerated electron-hole pairs. In this work, we synthesized 3D/2D ZnSe-MXene heterojunctions by an in situ electrostatic self-assembly method. Notably, the 3% MXene-ZnSe composite exhibited an optimized photocatalytic hydrogen production rate of 765.

View Article and Find Full Text PDF

Vanadium-based oxides have garnered significant attention for aqueous zinc batteries (AZBs), whereas sluggish Zn diffusion and structural collapse remain major challenges in achieving high-performance cathodes. Herein, different structures of iron-vanadium oxides were fabricated by modulating the amount of vanadium content. It is found that the porous Mott-Schottky heterojunction composed of FeVO and FeVO mixed phase was used to construct a self-generated FeVO-5 structure, which could lower the diffusion barrier and improve the electron transport derived from the formed built-in electric field at the interface, showing faster reaction kinetics and improved capacity compared with the singe-phase FeVO-1.

View Article and Find Full Text PDF

Modulating electronic structure to balance the requirement of both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is crucial for developing bifunctional catalysts. Herein, phase transformation engineering is utilized to separately regulate catalyst structure, and the designed NiFe@Ni/Fe-MnOOH schottky heterojunction exhibits remarkable bifunctional electrocatalytic activity with low overpotentials of 19 and 230 mV at 10 mA cm for HER and OER in 1M KOH, respectively. Meanwhile, an anion-exchange membrane water electrolyzer employing NiFe@Ni/Fe-MnOOH as electrodes shows low voltages of 1.

View Article and Find Full Text PDF

Heterojunctions (HJs) based on two-dimensional (2D) transition metal dichalcogenides are considered promising candidates for next-generation electronic and optoelectronic devices. Here, vertical (V-type) and lateral (L-type) HJ diodes based on metallic 1T-VSe and semiconducting 2H-WSe with out-of-plane and in-plane contacts are designed. First-principles quantum transport simulations reveal that both V- and L-type VSe/WSe HJ diodes form p-type Schottky contacts.

View Article and Find Full Text PDF

The pressing necessity to mitigate climate change and decrease greenhouse gas emissions has driven the advancement of heterostructure-based photocatalysts for effective CO₂ reduction. This study introduces a novel heterojunction photocatalyst formed by integrating potassium-doped polymeric carbon nitride (KPCN) with metallic Zn₃N₂, synthesized via a microwave-assisted molten salt method. The resulting Schottky contact effectively suppresses the reverse diffusion of electrons, achieving spatial separation of photogenerated charges and prolonging their lifetime, which significantly enhances photocatalytic activity and efficiency.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!