Background: Some of the most important malaria vectors in South America belong to the Albitarsis Complex (Culicidae; Anophelinae; Anopheles). Understanding the origin, nature, and geographical distribution of species diversity in this important complex has important implications for vector incrimination, control, and management, and for modelling future responses to climate change, deforestation, and human population expansion. This study attempts to further explore species diversity and evolutionary history in the Albitarsis Complex by undertaking a characterization and phylogenetic analysis of the mitogenome of all 10 putative taxa in the Albitarsis Complex.
Methods: Mitogenome assembly and annotation allowed for feature comparison among Albitarsis Complex and Anopheles species. Selection analysis was conducted across all 13 protein-coding genes. Maximum likelihood and Bayesian inference methods were used to construct gene and species trees, respectively. Bayesian methods were also used to jointly estimate species delimitation and species trees.
Results: Gene composition and order were conserved across species within the complex. Unique signatures of positive selection were detected in two species-Anopheles janconnae and An. albitarsis G-which may have played a role in the recent and rapid diversification of the complex. The COI gene phylogeny does not fully recover the mitogenome phylogeny, and a multispecies coalescent-based phylogeny shows that considerable uncertainty exists through much of the mitogenome species tree. The origin of divergence in the complex dates to the Pliocene/Pleistocene boundary, and divergence within the distinct northern South American clade is estimated at approximately 1 million years ago. Neither the phylogenetic trees nor the delimitation approach rejected the 10-species hypothesis, although the analyses could not exclude the possibility that four putative species with scant a priori support (An. albitarsis G, An. albitarsis H, An. albitarsis I, and An. albitarsis J), represent population-level, rather than species-level, splits.
Conclusion: The lack of resolution in much of the species tree and the limitations of the delimitation analysis warrant future studies on the complex using genome-wide data and the inclusion of additional specimens, particularly from two putative species, An. albitarsis I and An. albitarsis J.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8627034 | PMC |
http://dx.doi.org/10.1186/s13071-021-05090-w | DOI Listing |
Parasit Vectors
November 2021
Walter Reed Biosystematics Unit, Smithsonian Institution Museum Support Center, MRC-534, 4210 Silver Hill Rd., Suitland, MD, 20746, USA.
Background: Some of the most important malaria vectors in South America belong to the Albitarsis Complex (Culicidae; Anophelinae; Anopheles). Understanding the origin, nature, and geographical distribution of species diversity in this important complex has important implications for vector incrimination, control, and management, and for modelling future responses to climate change, deforestation, and human population expansion. This study attempts to further explore species diversity and evolutionary history in the Albitarsis Complex by undertaking a characterization and phylogenetic analysis of the mitogenome of all 10 putative taxa in the Albitarsis Complex.
View Article and Find Full Text PDFPLoS One
November 2021
Departamento de Agronomía, Facultad de Ciencias Agrarias, Bogotá, Universidad Nacional de Colombia, Bogotá, Distrito Capital, Colombia.
Anopheles albitarsis F is a putative species belonging to the Albitarsis Complex, recognized by rDNA, mtDNA, partial white gene, and microsatellites sequences. It has been reported from the island of Trinidad, Venezuela and Colombia, and incriminated as a vector of malaria parasites in the latter. This study examined mitochondrially encoded cytochrome c oxidase I (MT-CO1) sequences of An.
View Article and Find Full Text PDFParasit Vectors
November 2020
Department of Entomology, Smithsonian Institution, National Museum of Natural History (NMNH), Washington, DC, 20560, USA.
Background: Morphological identification of adult females of described species of the genus Anopheles Meigen, 1818 in South America is problematic, but necessary due to their differing roles in the transmission of human malaria. The increase in the number of species complexes uncovered by molecular taxonomy challenges accurate identification using morphology. In addition, the majority of newly discovered species have not been formally described and in some cases the identities of the nominotypical species of species complexes have not been resolved.
View Article and Find Full Text PDFParasit Vectors
October 2020
Department of Entomology, Smithsonian Institution, National Museum of Natural History (NMNH), Washington, DC, 20560, USA.
Background: Accurate identification of the species of Anopheles Meigen, 1818 requires careful examination of all life stages. However, morphological characters, especially those of the females and fourth-instar larvae, show some degree of polymorphism and overlap among members of species complexes, and sometimes even within progenies. Characters of the male genitalia are structural and allow accurate identification of the majority of species, excluding only those in the Albitarsis Complex.
View Article and Find Full Text PDFJ Med Entomol
March 2021
Walter Reed Biosystematics Unit, Smithsonian Institution Museum Support Center, Suitland, MD.
The Neotropical Albitarsis Group is a complex assemblage of essentially isomorphic species which currently comprises eight recognized species-five formally described (Anopheles albitarsis Lynch-Arribalzaga, An. deaneorum Rosa-Freitas, An. janconnae Wilkerson and Sallum, An.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!