Background: Alzheimer's disease (AD), the most common form of dementia, is caused by the degeneration of the central nervous system (CNS). A previous study reported that signal transducer and activator of transcription 3 (STAT3) is activated during AD development; nonetheless, the related mechanism remains unknown. Thus, this study used a cell model to explore whether and how the protein inhibitor of activated STAT3 (PIAS3) is involved in AD development.
Methods: Cerebrospinal fluid (CSF) specimens of 30 patients with AD and 10 normal participants were included in this study. SH-SY5Y cells were used to constructed AD model. Relevant indices were then detected and analyzed.
Results: The results showed that compared with the control group, PIAS3 expression was substantially decreased in patients with AD and amyloid beta (Aβ)-treated SH-SY5Y cells. PIAS3 overexpression was able to reverse the detrimental effects of Aβ treatment on cell survival and growth. Further, it could also ameliorate apoptosis and oxidative stress in Aβ-treated SH-SY5Y cells. Additionally, PIAS3 was shown to reduce the activated form of STAT3 and increase the activity of the downstream Nestin/nuclear factor erythroid 2-related factor/heme oxygenase-1 pathway.
Conclusions: STAT3 reactivation by colivelin treatment negated the influence of PIAS3 on the survival, growth, apoptosis, and oxidative stress of Aβ-treated SH-SY5Y cells.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8626961 | PMC |
http://dx.doi.org/10.1186/s10020-021-00410-3 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!