Purpose: The currently available indicators-sensitivity and specificity of expert radiological evaluation of MRIs-to identify mesial temporal lobe epilepsy (MTLE) associated with hippocampal sclerosis (HS) are deficient, as they cannot be easily assessed. We developed and investigated the use of a novel convolutional neural network trained on preoperative MRIs to aid diagnosis of these conditions.

Subjects And Methods: We enrolled 141 individuals: 85 with clinically diagnosed mesial temporal lobe epilepsy (MTLE) and hippocampal sclerosis International League Against Epilepsy (HS ILAE) type 1 who had undergone anterior temporal lobe hippocampectomy were assigned to the MTLE-HS group, and 56 epilepsy clinic outpatients diagnosed as nonepileptic were assigned to the normal group. We fine-tuned a modified CNN (mCNN) to classify the fully connected layers of ImageNet-pretrained VGG16 network models into the MTLE-HS and control groups. MTLE-HS was diagnosed using MRI both by the fine-tuned mCNN and epilepsy specialists. Their performances were compared.

Results: The fine-tuned mCNN achieved excellent diagnostic performance, including 91.1% [85%, 96%] mean sensitivity and 83.5% [75%, 91%] mean specificity. The area under the resulting receiver operating characteristic curve was 0.94 [0.90, 0.98] (DeLong's method). Expert interpretation of the same image data achieved a mean sensitivity of 73.1% [65%, 82%] and specificity of 66.3% [50%, 82%]. These confidence intervals were located entirely under the receiver operating characteristic curve of the fine-tuned mCNN.

Conclusions: Deep learning-based diagnosis of MTLE-HS from preoperative MR images using our fine-tuned mCNN achieved a performance superior to the visual interpretation by epilepsy specialists. Our model could serve as a useful preoperative diagnostic tool for ascertaining hippocampal atrophy in patients with MTLE.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.eplepsyres.2021.106815DOI Listing

Publication Analysis

Top Keywords

temporal lobe
16
lobe epilepsy
12
hippocampal sclerosis
12
fine-tuned mcnn
12
deep learning-based
8
learning-based diagnosis
8
associated hippocampal
8
mesial temporal
8
epilepsy mtle
8
epilepsy specialists
8

Similar Publications

Interpersonal interaction is essential to romantic couples. Understanding how gender impacts an individual's brain activities during intimate interaction is crucial. The present study examined gender differences in oxyhemoglobin (oxy-Hb) changes during real-time drawing interactions between members of romantic couples using non-invasive functional near-infrared spectroscopy (fNIRS).

View Article and Find Full Text PDF

Relationship between functional structures and horizontal connections in macaque inferior temporal cortex.

Sci Rep

January 2025

Department of Neurosurgery of the Second Affiliated Hospital, Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou, China.

Horizontal connections in anterior inferior temporal cortex (ITC) are thought to play an important role in object recognition by integrating information across spatially separated functional columns, but their functional organization remains unclear. Using a combination of optical imaging, electrophysiological recording, and anatomical tracing, we investigated the relationship between stimulus-response maps and patterns of horizontal axon terminals in the macaque ITC. In contrast to the "like-to-like" connectivity observed in the early visual cortex, we found that horizontal axons in ITC do not preferentially connect sites with similar object selectivity.

View Article and Find Full Text PDF

Our previous in silico data indicated an overrepresentation of the ZF5 motif in the promoters of genes in which circadian oscillations are altered in the ventral hippocampus in the pilocarpine model of temporal lobe epilepsy in mice. In this study, we test the hypothesis that the Zbtb14 protein oscillates in the hippocampus in a diurnal manner and that this oscillation is disrupted by epilepsy. We found that Zbtb14 immunostaining is present in the cytoplasm and cell nuclei.

View Article and Find Full Text PDF

Prediction of Pharmacoresistance in Drug-Naïve Temporal Lobe Epilepsy Using Ictal EEGs Based on Convolutional Neural Network.

Neurosci Bull

January 2025

Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, College of Pharmaceutical Sciences, The Second Affiliated Hospital of Zhejiang Chinese Medical University (Xinhua Hospital), Zhejiang Chinese Medical University, Hangzhou, 310053, China.

Approximately 30%-40% of epilepsy patients do not respond well to adequate anti-seizure medications (ASMs), a condition known as pharmacoresistant epilepsy. The management of pharmacoresistant epilepsy remains an intractable issue in the clinic. Its early prediction is important for prevention and diagnosis.

View Article and Find Full Text PDF

Background: Sudden sensorineural hearing loss (SSNHL) is associated with abnormal changes in the brain's central nervous system. Previous studies on the brain networks of SSNHL have primarily focused on functional connectivity within the brain. However, in addition to functional connectivity, structural connectivity also plays a crucial role in brain networks.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!