A new contact stamping method for fabrication of paper-based analytical devices (PADs) is reported. It uses an all-purpose acrylic varnish and 3D-printed stamps to pattern hydrophobic structures on paper substrates. The use of 3D printing allows quickly prototyping the desired stamp shape without resorting to third-party services, which are often expensive and time consuming. To the best of our knowledge, this is the first report regarding the use of this material for creation of hydrophobic barriers in paper substrates, as well as this 3D printing-based stamping method. The acrylic varnish was characterized and the features of the stamping method were studied. The PADs developed here presented better compatibility with organic solvents and surfactants compared with similar protocols. Furthermore, the use of this contact stamping method for fabrication of paper electrochemical devices was also possible, as well as multiplexed microfluidic devices for lateral flow testing. The analytical applicability of the varnish-based PADs was demonstrated through the image-based colorimetric quantification of iron in pharmaceutical samples. A limit of detection of 0.61 mg L was achieved. The results were compared with spectrophotometry for validation and presented great concordance (relative error was < 5% and recoveries were between 104 and 108%). Thus, taking into account the performance of the devices explored here, we believe this novel contact stamping method is a very interesting alternative for production of PADs, exhibiting great potentiality. In addition, this work brings a new application of 3D printing in analytical sciences.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00604-021-05102-7DOI Listing

Publication Analysis

Top Keywords

stamping method
20
contact stamping
12
acrylic varnish
12
fabrication paper
8
analytical devices
8
method fabrication
8
paper substrates
8
stamping
5
method
5
simple fast
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!