Sub-nanometric materials (SNMs) are an attractive scope in recent years due to their atomic-level size and unique properties. Among various performances of SNMs, photothermal energy conversion is one of the most important ones because it can efficiently utilize the light energy. Herein, the SNMs with photothermal energy conversion behaviors and their applications are reviewed. First, a hydrothermal/solvothermal method for the synthesis of SNMs is systematically discussed, including the LaMer pathway and the cluster-nuclei coassembly pathway. Based on this synthetic strategy, many kinds of SNMs with different morphologies are successfully prepared, such as nanorings, nanowires, nanosheets, and nanobelts. These SNMs exhibit excellent photothermal performance under the laser or solar irradiation according to their different light absorption ranges. These enhanced absorption performances of SNMs are induced by the mechanism of plasmonic localized heating or nonradiative relaxation. Finally, the applications of the photothermal SNMs are illustrated. The SNMs with photothermal behaviors can be widely applied in the fields of solar vapor generation, biomedicine, and light-responsive composites construction. It is hoped that this review can provide new viewpoints and profound understanding to the SNMs in photothermal energy conversion.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8728870 | PMC |
http://dx.doi.org/10.1002/advs.202104225 | DOI Listing |
Vet Clin North Am Small Anim Pract
January 2025
Auburn University, College of Veterinary Medicine, Department of Clinical Sciences, 1130 Wire Road, Auburn, AL 36849-5517, USA.
Laser usage in veterinary dermatology has increased in popularity over the last several decades. Carbon dioxide (CO) laser is the leading modality in surgical laser for veterinary dermatology because of its unmatched performance with soft tissue, particularly the skin. This laser cuts and coagulates tissue via the photothermal effect of laser energy when interacting with soft tissues with high water content, such as skin.
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2024
Laboratory of Alternative Energy Conversion Systems, Department of Mechanical Engineering, School of Engineering, University of Thessaly, Pedion Areos 38834, Greece. Electronic address:
The coupling of carbon dioxide (CO) with epoxides to produce cyclic carbonates is a desirable decarbonization approach, but its commercial applicability is still restricted by the costly catalysts required, as well as the need for high temperature and high pressure. Herein, oxygen vacancy-rich defective tungsten oxide (WO) rich in Lewis acid sites was modified by Prussian blue (PB), and the obtained composite reaches up to 94 % styrene carbonate yield (171 mmol gh) at ambient temperature and pressure, exhibiting outstanding advantages in the photocatalytic CO cycloaddition reaction compared with currently reported photocatalysts. It is found that the introduction of PB with photothermal properties significantly enhances the capability of WO to absorb and activate CO and epoxide, along with its light utilization ability.
View Article and Find Full Text PDFSci Adv
January 2025
National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu 215123, China.
Flexible thermoelectric systems capable of converting human body heat or solar heat into sustainable electricity are crucial for the development of self-powered wearable electronics. However, challenges persist in maintaining a stable temperature gradient and enabling scalable fabrication for their commercialization. Herein, we present a facile approach involving the screen printing of large-scale carbon nanotube (CNT)-based thermoelectric arrays on conventional textile.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, P. R. China.
Dentin hypersensitivity (DH), marked by exposed dentinal tubules, presents as a sharp toothache triggered by stimuli and subsides when the stimuli are removed. To address the limitations of current commercial desensitizers in terms of acid resistance, friction resistance, and stability, a black phosphorus nanosheet-composited methacrylate gelatin hydrogel (GelMA/BP) is developed for DH treatment, leveraging the synergistic effects of photothermal therapy and biomineralization. Incorporating the BP nanosheet provided GelMA/BP with a stable photothermal response and the continuous release of phosphate anions, which blocked dentinal tubules by converting light energy into heat and initiating biomineralization.
View Article and Find Full Text PDFInt J Nanomedicine
January 2025
Key Laboratory of Nanomedical Technology (Education Department of Fujian Province), Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, People's Republic of China.
Background: The dense and fibrotic nature of the pancreatic tumor microenvironment significantly contributes to tumor invasion and metastasis. This challenging environment acts as a formidable barrier, hindering effective drug penetration and delivery, which ultimately limits the efficacy of conventional cancer treatments. Gold nanoparticles (AuNPs) have emerged as promising nanocarriers to overcome the extracellular matrix barrier; however, their limited targeting precision, poor delivery efficiency, and insufficient photothermal conversion present challenges.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!