We examined the sensitivity of the neurons in the inferior colliculus (IC) in male and female rats to the interaural time differences (ITDs) conveyed in electrical pulse trains. Using bipolar pairs of electrodes that selectively activate the auditory nerve fibers at different intracochlear locations, we assessed whether the responses to electrical stimulation with ITDs in different frequency regions were processed differently. Most well-isolated single units responded to the electrical stimulation in only one of the apical or basal cochlear regions, and they were classified as either apical or basal units. Regardless of the cochlear stimulating location, more than 70% of both apical and basal units were sensitive to ITDs of electrical stimulation. However, the pulse rate dependence of neural ITD sensitivity differed significantly depending on the location of the stimulation. Moreover, ITD discrimination thresholds and the relative incidence of ITD tuning type markedly differed between units activated by apical and basal stimulations. With apical stimulation, IC neurons had a higher incidence of peak-type ITD function, which mostly exhibited the steepest position of the tuning curve within the rat's physiological ITD range of ±160 μs and, accordingly, had better ITD discrimination thresholds than those with basal stimulation. These results support the idea that ITD processing in the IC might be determined by functionally segregated frequency-specific pathways from the cochlea to the auditory midbrain.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jnr.24991 | DOI Listing |
Cureus
December 2024
Department of Basic and Clinical Oral Sciences, Umm Al-Qura University, Makkah, SAU.
Objectives: Head and neck malignancies (HNMs) encompass a variety of cancers that affect the oral and para-oral tissues, the most common of which are squamous cell carcinomas. Radiotherapy is commonly used to treat these cancers, often involving radiation exposure to the salivary glands. This study aims to investigate the early impacts of radiotherapy on the internal microstructure of the salivary gland cells and identify which gland exhibits the highest level of radiosensitivity.
View Article and Find Full Text PDFAPL Bioeng
March 2025
Blue Mountains World Interdisciplinary Innovation Institute (bmwi3), Blue Mountains, New South Wales, Australia.
Here, we report on the first part of a two-part experimental series to elucidate spatiotemporal cytoskeletal remodeling, which underpins the evolution of stem cell shape and fate, and the emergence of tissue structure and function. In Part I of these studies, we first develop protocols to stabilize microtubules exogenously using paclitaxel (PAX) in a standardized model murine embryonic stem cell line (C3H/10T1/2) to maximize comparability with previously published studies. We then probe native and microtubule-stabilized stem cells' capacity to adapt to volume changing stresses effected by seeding at increasing cell densities, which emulates local compression and tissue template formation during development.
View Article and Find Full Text PDFPlacenta
November 2024
Institute of Biochemistry and Molecular Medicine, University of Bern, Switzerland. Electronic address:
Studying iron transfer across trophoblast monolayers is crucial given the significance of iron in maintaining a healthy pregnancy and supporting fetal growth and development. To get insights into the complex mechanism of transplacental iron transfer, we developed a standardized Transwell®-based monolayer model using BeWo (clone b30) cells. Our proposed method is divided into two parts: 1.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
State Key Laboratory of Wheat Improvement, College of Life Science, Shandong Agricultural University, Tai'an 271018, China.
In many plants, the asymmetric division of the zygote sets up the apical-basal body axis. In the cress , the zygote coexpresses regulators of the apical and basal embryo lineages, the transcription factors WOX2 and WRKY2/WOX8, respectively. WRKY2/WOX8 activity promotes nuclear migration, cellular polarity, and mitotic asymmetry of the zygote, which are hallmarks of axis formation in many plant species.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Oncode Institute, Hubrecht Institute-Royal Netherlands Academy of Arts and Science, Utrecht 3584 CT, The Netherlands.
Matrigel/BME, a basement membrane-like preparation, supports long-term growth of epithelial 3D organoids from adult stem cells [T. Sato , , 262-265 (2009); T. Sato , , 1762-1772 (2011)].
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!