Xanthomonas campestris pv. campestris (Xcc) is a seed-transmitted vascular pathogen causing black rot disease on cultivated and wild Brassicaceae. Xcc enters the plant tissues preferentially via hydathodes, which are organs localized at leaf margins. To decipher both physiological and virulence strategies deployed by Xcc during early stages of infection, the transcriptomic profile of Xcc was analysed 3 days after entry into cauliflower hydathodes. Despite the absence of visible plant tissue alterations and despite a biotrophic lifestyle, 18% of Xcc genes were differentially expressed, including a striking repression of chemotaxis and motility functions. The Xcc full repertoire of virulence factors had not yet been activated but the expression of the HrpG regulon composed of 95 genes, including genes coding for the type III secretion machinery important for suppression of plant immunity, was induced. The expression of genes involved in metabolic adaptations such as catabolism of plant compounds, transport functions, sulphur and phosphate metabolism was upregulated while limited stress responses were observed 3 days postinfection. We confirmed experimentally that high-affinity phosphate transport is needed for bacterial fitness inside hydathodes. This analysis provides information about the nutritional and stress status of bacteria during the early biotrophic infection stages and helps to decipher the adaptive strategy of Xcc to the hydathode environment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8743013 | PMC |
http://dx.doi.org/10.1111/mpp.13117 | DOI Listing |
New Phytol
October 2022
LIPME, Université de Toulouse, INRAE, CNRS, Université Paul Sabatier, 31320, Castanet-Tolosan, France.
Plant diseases are an important threat to food production. While major pathogenicity determinants required for disease have been extensively studied, less is known on how pathogens thrive during host colonization, especially at early infection stages. Here, we used randomly barcoded-transposon insertion site sequencing (RB-TnSeq) to perform a genome-wide screen and identify key bacterial fitness determinants of the vascular pathogen Xanthomonas campestris pv campestris (Xcc) during infection of the cauliflower host plant (Brassica oleracea).
View Article and Find Full Text PDFMol Plant Pathol
February 2022
LIPME, Université de Toulouse, INRAE, CNRS, Université Paul Sabatier, Castanet-Tolosan, France.
Xanthomonas campestris pv. campestris (Xcc) is a seed-transmitted vascular pathogen causing black rot disease on cultivated and wild Brassicaceae. Xcc enters the plant tissues preferentially via hydathodes, which are organs localized at leaf margins.
View Article and Find Full Text PDFJ Agric Food Chem
April 2019
Department of Plant Biology, Institute of Biology , University of Campinas-Unicamp, P.O. Box 6109, Campinas , SP 13083-970 , Brazil.
Atrazine is one of the most used herbicides and has been associated with persistent surface and groundwater contamination, and novel formulations derived from nanotechnology can be a potential solution. We used poly(ε-caprolactone) nanoencapsulation of atrazine (NC+ATZ) to develop a highly effective herbicidal formulation. Detailed structural study of interaction between the formulation and Brassica juncea plants was carried out with evaluation of the foliar uptake of nanoatrazine and structural alterations induced in the leaves.
View Article and Find Full Text PDFBio Protoc
October 2017
Institut Fédératif de Recherche 3450, Université de Toulouse, CNRS, UPS, Plateforme Imagerie TRI-Genotoul, Castanet-Tolosan, France.
Hydathodes are plant organs present on leaf margins of a wide range of vascular plants and are the sites of guttation. Both anatomy and physiology of hydathodes are poorly documented. We have recently reported on the anatomy of cauliflower and hydathodes and on their infection by the vascular pathogenic bacterium pv.
View Article and Find Full Text PDFBio Protoc
October 2017
Institut Fédératif de Recherche 3450, Université de Toulouse, CNRS, UPS, Plateforme Imagerie TRI-Genotoul, Castanet-Tolosan, France.
The present protocol to visualize living bacteria at the pore level of cauliflower hydathodes is simple and trained users in confocal microscopy can execute it successfully. It can be easily adapted to capture images with other plant-microorganism interactions at the leaf surface and should be useful to obtain important information on pore and stomatal biology. A critical limitation to methods used to observe plant-microorganism interactions in the pore is the application of too much pressure to the sample during observations and z-stack acquisitions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!