Oral pathogen in the pathogenesis of colorectal cancer.

J Gastroenterol Hepatol

Division of Gastroenterology and Hepatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Digestive Disease, State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Shanghai, China.

Published: February 2022

The human body contains more than 100 trillion microorganisms, including the oral cavity, the skin, and the gastrointestinal tract. After the gastrointestinal tract, the oral cavity harbors one of the most diverse microbial communities within the human body and harbors more than 770 species of bacteria. The composition of the oral and gut microbiomes is quite different, but there may be a microbiological link between the two mucosal sites during the course of disease. More studies indicate that oral bacteria can disseminate to the distal gut via enteral or hematogenous routes. This is mostly obvious in periodontitis, where specific bacteria, such as Fusobacterium nucleatum and Porphyromonas gingivalis, show this pathogenic feature. The translocation of oral microbes to the gut may give rise to a variety of gastrointestinal diseases, including colorectal cancer. However, the precise role that oral microbe play in colorectal cancer has not been fully illustrated. Here, we summarize the current researches on possible pathways of ectopic gut colonization by oral bacteria and their possible contribution to the pathogenesis of colorectal cancer. Understanding the correlation of the oral-to-gut microbial axis in the pathogenesis of colorectal cancer will contribute to precise diagnosis and effective treatment.

Download full-text PDF

Source
http://dx.doi.org/10.1111/jgh.15743DOI Listing

Publication Analysis

Top Keywords

colorectal cancer
20
pathogenesis colorectal
12
oral
8
human body
8
oral cavity
8
gastrointestinal tract
8
oral bacteria
8
colorectal
5
cancer
5
oral pathogen
4

Similar Publications

Background: Colorectal cancer (CRC) is characterized by poor responsiveness to immune evasion and immunotherapy. RNA 7-methylguanine (m7G) modification plays a key role in tumorigenesis. However, the mechanisms by which m7G-modified RNA metabolism affects tumor progression are not fully understood, nor is the contribution of m7G-modified RNA to the CRC immune microenvironment.

View Article and Find Full Text PDF

Background: Gasdermin D (GSDMD) is a key effector molecule that activates pyroptosis through its N terminal domain (GSDMD-NT). However, the roles of GSDMD in colorectal cancer (CRC) have not been fully explored. The role of the full-length GSDMD (GSDMD-FL) is also not clear.

View Article and Find Full Text PDF

Background: The treatment of advanced colorectal cancer (CRC) has progressed slowly, with chemotherapy combined with targeted therapy being the first-line treatment for the disease, but the improvement in efficacy is not satisfactory. Compound Kushen injection (CKI) is one of the representative drugs of anti-cancer Chinese herbal injection drugs, which has been widely used in the adjunct treatment of cancer in China. The aim of this trial is to evaluate the efficacy and safety of CKI combined with first-line treatment of advanced CRC.

View Article and Find Full Text PDF

Wnt signaling is essential for cell growth and tumor formation and is abnormally activated in colorectal cancer (CRC), contributing to tumor progression; however, the specific role and regulatory mechanisms involved in tumor development remain unclear. Here, we show that Ephexin1, a guanine nucleotide exchange factor, is significantly overexpressed in CRC and is correlated with increased Wnt/β-catenin pathway activity. Through comprehensive analysis, including RNA sequencing data from TCGA and functional assays, we observed that Ephexin1 promotes tumor proliferation and migration by activating the Wnt/β-catenin pathway.

View Article and Find Full Text PDF

Corrigendum to "Colorectal cancer cells establish metabolic reprogramming with cancer-associated fibroblasts (CAFs) through lactate shuttle to enhance invasion, migration, and angiogenesis" [Int. Immunopharmacol. 143 (2024) 113470].

Int Immunopharmacol

December 2024

Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan 250012, China; Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Science, Shandong University, China; Shandong Cancer Hospital and Institute, 440 Jiyan Road, Jinan 250117, Shandong Province, China. Electronic address:

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!