A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Genetic diversity of rotavirus strains circulating in Norway before and after the introduction of rotavirus vaccination in children. | LitMetric

Globally, rotavirus (RV) is the leading cause of acute gastroenteritis (AGE) in young children under 5 years of age. Implementation of RV vaccination is expected to result in fewer cases of RV in the target population, but it is unknown if this also results in vaccine-induced virus strain replacement. Rotarix, a monovalent vaccine based on G1P[8] RV, was introduced in Norway in the children's immunization program in September 2014. The main aim of this study was to describe the diversity of RV circulating pre and post introduction of the RV vaccine in Norway and investigate changes in genotype distribution during the first 4 years after implementation. A total of 1108 samples were collected from children under 5 years enrolled with AGE from five large hospitals in Norway and were analyzed for RV by enzyme immunoassay (EIA). All positive results were genotyped by multiplex semi-nested reverse transcription PCR for identification of G and P types. In total, 487 of the 1108 (44%) samples, collected from the enrolled children, were positive for RV by EIA method which were further genotyped. G1P[8] was found to be the most common type of RV pre and post RV vaccine implementation followed by G9P[8]. There were neither geographical nor temporal differences in genotype dominance. Also, no apparent changes were shown in the genotype distribution in the postvaccine era for years from 2015 to 2018. In 21.4% of the cases, vaccine strains were detected. Continuous RV genotype surveillance is vital for assessing the effectiveness of a vaccine program and monitoring for any emergence of vaccine-escape strains. Genotyping is also necessary to detect vaccine strains to avoid reporting false-positive cases of active RV infection in newly vaccinated cases.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jmv.27484DOI Listing

Publication Analysis

Top Keywords

children years
8
pre post
8
changes genotype
8
genotype distribution
8
samples collected
8
vaccine strains
8
vaccine
6
genetic diversity
4
diversity rotavirus
4
strains
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!