Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Improving the NOx conversion efficiency and particulate combustion efficiency under cold-start conditions (low-temperature conditions) is still the main challenge faced by catalytic gasoline particulate filter systems (CGPFs). In this study, the physical and mathematical models of novel CGPFs are proposed based on the computational fluid dynamics software. Then, the models are validated based on experiments, and the performances of conventional and novel CGPFs are analyzed comparatively. The comparison conclusions indicate that the NOx conversion efficiency of the novel CGPFs increases by 3.2% and the particulate combustion efficiency increases by 2.7% under the same operating condition. Finally, the effects of exhaust flow v, exhaust oxygen mass fraction C, exhaust NO mass fraction C, and electric heating power P on the NOx conversion efficiency and particulate combustion efficiency are investigated. The weights of each influencing parameter on the NOx conversion efficiency and particulate combustion efficiency are explored by orthogonal tests. The conclusions show that the NOx conversion efficiency is increased by 3.6% and the particulate combustion efficiency is increased by 16.7% compared to the initial condition. This study has an important reference value for improving the purification efficiency of vehicle emission under cold-start conditions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-021-17726-6 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!