Structural, energetic and lipophilic analysis of SARS-CoV-2 non-structural protein 9 (NSP9).

Sci Rep

Laboratório de Planejamento e Desenvolvimento de Fármacos, Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, Rua Augusto Corrêa 01, 66075-110, Belém, Pará, Brasil.

Published: November 2021

AI Article Synopsis

Article Abstract

In SARS-CoV-2 replication complex, the Non-structural protein 9 (Nsp9) is an important RNA binding subunit in the RNA-synthesizing machinery. The dimeric forms of coronavirus Nsp9 increase their nucleic acid binding affinity and the N-finger motif appears to play a critical role in dimerization. Here, we present a structural, lipophilic and energetic study about the Nsp9 dimer of SARS-CoV-2 through computational methods that complement hydrophobicity scales of amino acids with molecular dynamics simulations. Additionally, we presented a virtual N-finger mutation to investigate whether this motif contributes to dimer stability. The results reveal for the native dimer that the N-finger contributes favorably through hydrogen bond interactions and two amino acids bellowing to the hydrophobic region, Leu45 and Leu106, are crucial in the formation of the cavity for potential drug binding. On the other hand, Gly100 and Gly104, are responsible for stabilizing the α-helices and making the dimer interface remain stable in both, native and mutant (without N-finger motif) systems. Besides, clustering results for the native dimer showed accessible cavities to drugs. In addition, the energetic and lipophilic analysis reveal that the higher binding energy in the native dimer can be deduced since it is more lipophilic than the mutant one, increasing non-polar interactions, which is in line with the result of MM-GBSA and SIE approaches where the van der Waals energy term has the greatest weight in the stability of the native dimer. Overall, we provide a detailed study on the Nsp9 dimer of SARS-CoV-2 that may aid in the development of new strategies for the treatment and prevention of COVID-19.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8626507PMC
http://dx.doi.org/10.1038/s41598-021-02366-0DOI Listing

Publication Analysis

Top Keywords

native dimer
16
energetic lipophilic
8
lipophilic analysis
8
non-structural protein
8
protein nsp9
8
n-finger motif
8
study nsp9
8
dimer
8
nsp9 dimer
8
dimer sars-cov-2
8

Similar Publications

Laboratory evolution in enables rapid catabolism of a model lignin-derived aromatic dimer.

Appl Environ Microbiol

January 2025

Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA.

Lignin contains a variety of interunit linkages, leading to a range of potential decomposition products that can be used as carbon and energy sources by microbes. β-O-4 linkages are the most common in native lignin, and associated catabolic pathways have been well characterized. However, the fate of the mono-aromatic intermediates that result from β-O-4 dimer cleavage has not been fully elucidated.

View Article and Find Full Text PDF

Light chain (AL) amyloidosis is the most common systemic amyloid disease characterized by abnormal accumulation of amyloid fibrils derived from immunoglobulin light chains (LCs). Both full-length (FL) LCs and their isolated variable (VL) and constant (CL) domains contribute to amyloid deposits in multiple organs, with the VL domain predominantly forming the fibril core. However, the role and interplay of these domains in amyloid aggregation and toxicity are poorly understood.

View Article and Find Full Text PDF

Engineering dimer mutants of human geranylgeranyl pyrophosphate synthase.

PLoS One

January 2025

Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada.

Geranylgeranyl pyrophosphate synthase (GGPPS), a key enzyme in protein prenylation, plays a critical role in cellular signal transduction and is a promising target for cancer therapy. However, the enzyme's native hexameric quaternary structure presents challenges for crystallographic studies. The primary objective of this study was to engineer dimeric forms of human GGPPS to facilitate high-resolution crystallographic analysis of its ligand binding interactions.

View Article and Find Full Text PDF

Human amylin, called also islet amyloid polypeptide (hIAPP), is the principal constituent of amyloid deposits in the pancreatic islets. Together with hyperglycemia, hIAPP-derived oligomers and aggregates are important culprits in type 2 diabetes mellitus (T2DM). Preventing aggregation, and in particular inhibiting the formation and/or stimulating degradation of toxic amylin oligomers formed early in the process, may reduce the negative effects of T2DM.

View Article and Find Full Text PDF

The aim of this study was to purify BMP-2 in an easy and time-efficient way. We have developed a new method in which BMP-2 is produced through leaky expression in E. coli BL21 (DE3) cells as inclusion bodies, eliminating the need for inducer Isopropyl β-D-1-thiogalactopyranoside (IPTG).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!