In China, Wang Bi Granule (WBG), composed of 16 herbal and 1 animal-based compounds, is used for clinical treatment of the "Wang Bi" syndrome, commonly referred to as later rheumatoid arthritis (RA) in modern medicine. It is also used in the treatment of ankylosing spondylitis, tuberculous arthritis, and Kashin-Beck disease, which are characterized by joint pain and swelling deformation. However, its pharmacological mechanisms remain unknown. We aimed to characterize the chemical components in WBG and examine the underlying mechanism for RA treatment using integrative pharmacological strategy, including chemical composition detection, efficacy evaluation, and mechanism exploration. We employed UPLC-QTOF-MS/MS to describe the chemical profile of WBG. TNF-α-stimulated RAW264.7 cells were used to simulate the inflammatory processes in RA and evaluate the anti-inflammatory effects of WBG. Network pharmacology was used to determine the mechanism underlying WBG action in RA. A total of 278 chemical components were identified or tentatively characterized. The water extract of WBG improved the imbalance in inflammation in TNF-α-stimulated RAW264.7 cells by regulating 179 differential genes. 55 key active constituents were obtained based on the interactions among "components" targets, RA-related genes, and differential genes (WBG vs TNF-α group) which may ameliorate RA by regulating 161 hub genes primarily involved in inflammation-related pathways. The present study, for the first time, employed integrative pharmacology to characterize the chemical profile of WBG and elucidate its mechanism of action against RA through an inflammation-immune regulatory system.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jpba.2021.114468 | DOI Listing |
Appl Biochem Biotechnol
January 2025
Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, 575018, Karnataka, India.
Gymnostachyum febrifugum, a less-known ethnomedicinal plant from the Western Ghats of India, is used to treat various diseases and serves as an antioxidant and antibacterial herb. The present study aims to profile the cytotoxic phytochemicals in G. febrifugum roots using GC-MS/MS, in vitro confirmation of cytotoxic potential against breast cancer and an in silico study to understand the mechanism of action.
View Article and Find Full Text PDFNaunyn Schmiedebergs Arch Pharmacol
January 2025
Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab, India.
Neuropathic pain, a challenging condition often associated with diabetes, trauma, or chemotherapy, impairs patients' quality of life. Current treatments often provide inconsistent relief and notable adverse effects, highlighting the urgent need for safer and more effective alternatives. This review investigates marine-derived bioactive compounds as potential novel therapies for neuropathic pain management.
View Article and Find Full Text PDFJ Wound Care
January 2025
Division of Plastic Surgery, Integrated Burn & Wound Care Center, Department of Surgery, Shuang-Ho Hospital, New Taipei City, Taiwan.
Objective: Deep sternal wound infection (DSWI) is a rare but devastating complication that is estimated to occur in 1-2% of patients after median sternotomy. Current standard of care (SoC) comprises antibiotics, debridement and negative pressure wound therapy (NPWT). Hyperbaric oxygen therapy (HBOT) appears to be an effective adjuvant therapy for osteomyelitis.
View Article and Find Full Text PDFNucleic Acids Res
January 2025
Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan.
Oscillation of the active form of the initiator protein DnaA (ATP-DnaA) allows for the timely regulation for chromosome replication. After initiation, DnaA-bound ATP is hydrolyzed, producing inactive ADP-DnaA. For the next round of initiation, ADP-DnaA interacts with the chromosomal locus DARS2 bearing binding sites for DnaA, a DNA-bending protein IHF, and a transcription activator Fis.
View Article and Find Full Text PDFBiomed Chromatogr
February 2025
School of Pharmaceutical Sciences, Jilin University, Changchun, People's Republic of China.
Previous studies have suggested that ginsenoside Rg glycine ester derivative (RG) exhibits therapeutic potential in mitigating hypoxia. This study aimed to elucidate the potential mechanism of RG in hypoxia injury through a combined approach of metabolomics and network pharmacology. Initially, a CoCl-induced cell hypoxia model was established, and the therapeutic impact of RG on biochemical indices was evaluated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!