Hospital length of stay (LOS) is an important clinical and economic outcome and knowing its predictors could lead to better planning of resources needed during hospitalization. This analysis sought to identify structure, patient, and nutrition-related predictors of LOS available at the time of admission in the global nutritionDay dataset and to analyze variations by country for countries with > 750. Data from 2006-2015 ( = 155,524) was utilized for descriptive and multivariable cause-specific Cox proportional hazards competing-risks analyses of total LOS from admission. Time to event analysis on 90,480 complete cases included: discharged ( = 65,509), transferred ( = 11,553), or in-hospital death ( = 3199). The median LOS was 6 days (25th and 75th percentile: 4-12). There is robust evidence that LOS is predicted by patient characteristics such as age, affected organs, and comorbidities in all three outcomes. Having lost weight in the last three months led to a longer time to discharge (Hazard Ratio (HR) 0.89; 99.9% Confidence Interval (CI) 0.85-0.93), shorter time to transfer (HR 1.40; 99.9% CI 1.24-1.57) or death (HR 2.34; 99.9% CI 1.86-2.94). The impact of having a dietician and screening patients at admission varied by country. Despite country variability in outcomes and LOS, the factors that predict LOS at admission are consistent globally.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8624242PMC
http://dx.doi.org/10.3390/nu13114111DOI Listing

Publication Analysis

Top Keywords

hospital length
8
length stay
8
admission global
8
patient nutrition-related
8
los admission
8
los
7
admission
5
predicting hospital
4
stay admission
4
global country-specific
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!