Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The development of highly active and stable photocatalysts, an effective way to remediate environment pollution and alleviate energy shortages, remains a challenging issue. In this work, a CdInS/In(OH) nanocomposite was deposited in-situ on NiCr-LDH nanosheets by a simple hydrothermal method, and the obtained CdInS/In(OH)/NiCr-LDH heterostructure photocatalysts with multiple intimate-contact interfaces exhibited better photocatalytic activity. The photocatalytic H evolution rate of CdInS/In(OH)/NiCr-LDH increased to 10.9 and 58.7 times that of the counterparts CdInS and NiCr-LDH, respectively. Moreover, the photocatalytic removal efficiency of Cr(VI) increased from 6% for NiCr-LDH and 75% for CdInS to 97% for CdInS/In(OH)/NiCr-LDH. The enhanced photocatalytic performance was attributed to the formation of multi-interfaces with strong interfacial interactions and staggered band alignments, which offered multiple pathways for carrier migration, thus promoting the separation efficiency of photo-excited electrons and holes. This study demonstrates a facile method to fabricate inexpensive and efficient heterostructure photocatalysts for solving environmental problems.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8619374 | PMC |
http://dx.doi.org/10.3390/nano11113122 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!