Upconversion nanocrystals that converted near-infrared radiation into emission in the ultraviolet spectral region offer many exciting opportunities for drug release, photocatalysis, photodynamic therapy, and solid-state lasing. However, a key challenge is the development of lanthanide-doped nanocrystals with efficient ultraviolet emission, due to low conversion efficiency. Here, we develop a dye-sensitized, heterogeneous core-multishelled lanthanide nanoparticle for ultraviolet upconversion enhancement. We systematically study the main influencing factors on ultraviolet upconversion emission, including dye concentration, excitation wavelength, and dye-sensitizer distance. Interestingly, our experimental results demonstrate a largely promoted multiphoton upconversion. The underlying mechanism and detailed energy transfer pathway are illustrated. These findings offer insights into future developments of highly ultraviolet-emissive nanohybrids and provide more opportunities for applications in photo-catalysis, biomedicine, and environmental science.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8623389 | PMC |
http://dx.doi.org/10.3390/nano11113114 | DOI Listing |
Anal Chem
December 2024
Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, Ciudad Universitaria, 28040 Madrid, Spain.
The neurotoxin α-cyclopiazonic acid (CPA) is an emerging mycotoxin produced as a secondary metabolite by several fungi species (., spp. and spp.
View Article and Find Full Text PDFInorg Chem
December 2024
Department of Chemistry, Applied Sciences Cluster, UPES Dehradun, Energy Acres Building, Dehradun 248007, Uttarakhand, India.
Lanthanide-based luminescent materials hold promise in sensing applications due to their distinct optical properties. Though advancements in lanthanide-based metal-organic frameworks (MOFs) have enhanced downshifting luminescence, achieving upconversion remains challenging. In this effort, we prepared upconverting ytterbium-doped europium MOFs (%Yb-EuMOFs; = 10, 20, and 30) via the solvothermal method using 2,6-naphthalenedicarboxylic acid (NDC) as an organic linker.
View Article and Find Full Text PDFJ Colloid Interface Sci
November 2024
Jiangxi Provincial Key Laboratory of Additive Manufacturing of Implantable Medical Device, Jiangxi University of Science and Technology, Nanchang 330013, China; State Key Laboratory of Precision Manufacturing for Extreme Service Performance, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China. Electronic address:
The photosensitive S-nitrosocysteine (CysNO) could respond to light irradiation to produce nitric oxide (NO), exhibiting tremendous potential in accelerating peripheral nerve regeneration. However, its further application was limited by the burst release of NO and the requirement for ultraviolet excitation with low tissue penetration. Herein, a near-infrared-triggered NO controlled release nanosystem UCNP@ZIF-8/CysNO consisting of an upconversion nanoparticle (UCNP) core and zeolitic imidazolate framework-8 (ZIF-8) shell loading with CysNO was constructed, and then blended with poly-l-lactic acid powder to fabricate nerve scaffold by laser additive manufacturing technique.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
Department of Applied Physics, Hebei University of Technology, Tianjin 300401, PR China.
Anti-counterfeiting technology plays an indispensable role in the high-tech field and various critical application areas. However, traditional anti-counterfeiting approaches currently in widespread use are too simplistic and easily replicated or forged, while advanced technologies with multiple anti-counterfeiting functions remain in the developmental stage. This study presents a novel multiple anti-counterfeiting technique.
View Article and Find Full Text PDFNanoscale
December 2024
CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST), No.11, ZhongGuanCun BeiYiTiao, Beijing 100190, P. R. China.
Optically active persistent luminescent materials are highly promising for anticounterfeiting applications due to their distinct luminescent features and the ability to display unique optical polarization properties. Despite significant progress in the development of circularly polarized persistent luminescence (CPPL) materials, the fabrication of upconverted circularly polarized persistent luminescence (UC-CPPL) materials remains a considerable challenge. In this study, we present an efficient strategy to construct UC-CPPL materials by embedding upconversion nanoparticles (UCNPs) and phosphors into chiral nematic liquid crystals (N*LC).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!