Synthesis and Characterization of MgO Thin Films Obtained by Spray Technique for Optoelectronic Applications.

Nanomaterials (Basel)

Laboratoire de Physique de la Matière Condensée, Département de Physique, Faculté des Sciences de Tunis, Université Tunis El Manar, Campus Universitaire, Tunis 2092, Tunisia.

Published: November 2021

Magnesium oxide (MgO) thin films with different magnesium concentrations ([Mg] = 0.05, 0.1, 0.15 and 0.2 mol·L) in a spray solution have been successfully grown using a spray pyrolysis technique. X-ray diffraction (XRD), Maud software, FTIR spectroscopy, a confocal microscope, Wien2k software, spectrophotometry and a Photoluminescence spectrometer were used to investigate the structural, morphological and optical properties. XRD analysis revealed a better crystalline quality of the MgO thin layer synthesized with [Mg] = 0.15 mol·L, which crystallized into a face-centered cubic structure along the preferred orientation (200) lattice plan. The enhancement of the crystalline quality for the MgO thin film ([Mg] = 0.15 mol·L) was obtained, which was accompanied by an increment of 94.3 nm of the crystallite size. No secondary phase was detected and the purity phase of the MgO thin film was confirmed using Maud software. From the transmission spectra results, high transparent and antireflective properties of the MgO thin film were observed, with an average transmission value of about 91.48% in the visible range, which can be used as an optical window or buffer layer in solar cell applications. The films also have a high reflectance value in the IR range, which indicates that the highly reflective surface will prevent an increase in surface temperature under solar irradiation, which could be beneficial in solar cell applications. A direct band gap type was estimated using the Tauc relation which is close to the experimental value of 4.0 eV for optimal growth. The MgO material was tested for the degradation of methylene blue (MB), which reached a high photodegradation rate of about 83% after 180 min under sunlight illumination. These experimental trends open a new door for promising the removal of water contaminants for photocatalysis application.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8618750PMC
http://dx.doi.org/10.3390/nano11113076DOI Listing

Publication Analysis

Top Keywords

mgo thin
24
015 mol·l
12
thin film
12
thin films
8
maud software
8
crystalline quality
8
quality mgo
8
[mg] 015
8
solar cell
8
cell applications
8

Similar Publications

We demonstrate high-throughput evaluation of the half-metallicity of CoMnSi Heusler alloys by spin-integrated hard X-ray photoelectron spectroscopy (HAXPES) of composition-spread films performed with high-brilliance synchrotron radiation at NanoTerasu, which identifies the optimum composition showing the best half-metallicity. Co Mn Si composition-spread thin films for  = 10-40% with a thickness of 30 nm are fabricated on MgO(100) substrates using combinatorial sputtering technique. The 2-ordering and (001)-oriented epitaxial growth of CoMnSi are confirmed by X-ray diffraction for  = 18-40%.

View Article and Find Full Text PDF

High temperature QDs organization and re-crystallization in glass supported MgO QDs doped PMMA film.

Sci Rep

January 2025

Condensed Matter Physics & Nanoscience Research Laboratory, Department of Physics and Material Science, Madan Mohan Malaviya University of Technology, Gorakhpur, 273010, U.P, India.

Article Synopsis
  • The study focuses on creating composite films of poly (methylmethacrylate) (PMMA) blended with magnesium oxide quantum dots (MgO QDs) at varying concentrations, and the films were annealed at 130°C for different durations to observe changes in their properties.
  • Analysis revealed that the initial crystallinity of the PMMA films decreased with annealing but slightly improved with the diffusion and coalescence of MgO QDs, leading to the formation of larger clusters that influenced the films' structural properties.
  • The research highlights the significance of temperature and molecular forces in the evolution of the film's morphology and stability, demonstrating unique energy dissipation mechanisms and the complex interplay of inter- and intra
View Article and Find Full Text PDF

We have grown (111)- and (001)-oriented NiO thin films on (0001)-Sapphire and (001)-MgO substrates using pulsed laser deposition (PLD), respectively. DC magnetic susceptibility measurements underline that the Néel temperatures of the samples are beyond room-temperature. This is further confirmed by the presence of two-magnon Raman scattering modes in these films in ambient conditions.

View Article and Find Full Text PDF

A body-centered cubic (bcc) FeCo(B) is a current standard magnetic material for perpendicular magnetic tunnel junctions (-MTJs) showing both large tunnel magnetoresistance (TMR) and high interfacial perpendicular magnetic anisotropy (PMA) when MgO is utilized as a barrier material of -MTJs. Since the -MTJ is a key device of current spintronics memory, . spin-transfer-torque magnetoresistive random access memory (STT-MRAM), it attracts attention for further advance to explore new magnetic materials showing both large PMA and TMR.

View Article and Find Full Text PDF

Hexagonal perovskite materials are emerging quantum spin liquid (QSL) systems providing a fertile ground to realize novel quantum phenomena. The epitaxially grown thin films of such materials offer a compelling approach to utilize exotic quantum phases for device applications with better control over the structure. We fabricate the intriguing QSL triple perovskite BaCuSbOepitaxially onto a MgO (100) substrate by pulsed laser deposition technique as well as in bulk form for comparison.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!