This paper reports first-principles calculations on PbBi2Te2S2, PbBi2Te2Se2 and PbBi2Te4 monolayers. The strain effects on their electronic and thermoelectric properties as well as on their stability have been investigated. Without strain, the PbBi2Te4 monolayer exhibits highest Seebeck coefficient with a maximum value of 671 μV/K. Under tensile strain the highest power factor are 12.38×1011 Wm-1K-2s-1, 10.74×1011 Wm-1K-2s-1 and 6.51×1011 Wm-1K-2s-1 for PbBi2Te2S2, PbBi2Te2Se2 and PbBi2Te4 at 3%, 2% and 1% tensile strains, respectively. These values are 85.9%, 55.0% and 3.3% larger than those of the unstrained structures.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8624905PMC
http://dx.doi.org/10.3390/nano11112979DOI Listing

Publication Analysis

Top Keywords

pbbi2te2s2 pbbi2te2se2
8
pbbi2te2se2 pbbi2te4
8
first-principle investigations
4
investigations electronic
4
electronic transport
4
transport properties
4
properties pbbitex
4
pbbitex s/se/te
4
s/se/te monolayers
4
monolayers paper
4

Similar Publications

This paper reports first-principles calculations on PbBi2Te2S2, PbBi2Te2Se2 and PbBi2Te4 monolayers. The strain effects on their electronic and thermoelectric properties as well as on their stability have been investigated. Without strain, the PbBi2Te4 monolayer exhibits highest Seebeck coefficient with a maximum value of 671 μV/K.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!