Recently, various waste microplastics sensors have been introduced in response to environmental and biological hazards posed by waste microplastics. In particular, the detrimental effects of nano-sized plastics or nanoplastics have been reported to be severe. Moreover, there have been many difficulties for sensing microplastics due to the limited methodologies for selectively recognizing nanoplastics. In this study, a customized gold nanoparticles (Au NPs) based localized surface plasmon resonance (LSPR) system having bio-mimicked peptide probes toward the nanoplastics was demonstrated. The specific determination through the oligo-peptide recognition was accomplished by chemical conjugation both on the LSPR chip's 40~50 nm Au NPs and sandwiched 5 nm Au NPs, respectively. The peptide probe could selectively bind to polystyrene (PS) nanoplastics in the forms of fragmented debris by cryo-grinding. A simple UV-Vis spectrophotometer was used to identify the LSPR sensing by primarily measuring the absorbance change and shift of absorption peak. The sandwich-binding could increase the LSPR detection sensitivity up to 60% due to consecutive plasmonic effects. In addition, microwave-boiled DI water inside of a styrofoam container was tested for putative PS nanoplastics resource as a real accessible sample. The LSPR system could be a novel protocol overcoming the limitations from conventional nanoplastic detection.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8617854PMC
http://dx.doi.org/10.3390/nano11112887DOI Listing

Publication Analysis

Top Keywords

nanoplastic detection
8
localized surface
8
surface plasmon
8
plasmon resonance
8
waste microplastics
8
lspr system
8
nanoplastics
5
lspr
5
peptide specific
4
specific nanoplastic
4

Similar Publications

EchoTilt: An Acoustofluidic Method for the Capture and Enrichment of Nanoplastics Directed Toward Drinking Water Monitoring.

Micromachines (Basel)

December 2024

Science for Life Laboratory, Department of Protein Science, Division of Nanobiotechnology, KTH Royal Institute of Technology, 171 65 Solna, Sweden.

Micro- and nanoplastics have become increasingly relevant as contaminants to be monitored due to their potential health effects and environmental impact. Nanoplastics, in particular, have been shown to be difficult to detect in drinking water, requiring new capture technologies. In this work, we applied the acoustofluidic seed particle method to capture nanoplastics in an optimized, tilted grid of silica clusters even at the high flow rate of 5 mL/min.

View Article and Find Full Text PDF

Co-exposure to polystyrene nanoplastics and F-53B induces vascular endothelial cell pyroptosis through the NF-κB/NLRP3 pathway.

J Hazard Mater

January 2025

Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, Hebei 050017, China; The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang 050017, China. Electronic address:

6:2 Chlorinated polyfluorinated ether sulfonate (6:2 Cl-PFESA; trade name F-53B) is an alternative to perfluorooctane sulfonate (PFOS) and is widely detected in various environmental media and biological samples. Polystyrene nanoplastics (PS-NPs) have become a significant pollutant in the global environment. However, the comprehensive effects of both on the vascular system of mammals are still unclear.

View Article and Find Full Text PDF

Nano-sized polystyrene plastics toxicity: Necroptosis pathway caused by autophagy blockade and lysosomal dysfunction.

NanoImpact

December 2024

National Key Laboratory of Veterinary Public Health and Safety. College of Veterinary Medicine, China Agricultural University, Beijing 100093, China. Electronic address:

The persistent detection of nano-sized plastic particles in humans, animals, and animal-derived products underscores the potential impact of these particles on living organisms. Consequently, the toxicology of such particles has emerged as a pivotal research interests in recent years. In this study, NP was synthesized successfully with an average particle size of 100 nm using a emulsion polymerization method as model particles.

View Article and Find Full Text PDF

Metal-free AAO membranes function as both filters and Raman enhancers for the analysis of nanoplastics.

Water Res

December 2024

Department of Chemistry and Chemical Engineering, Inha University, Incheon, 22212, Republic of Korea; Program in Biomedical Science and Engineering, Inha University, Incheon, 22212, Republic of Korea; NanoRaman Analysis Corp., 100, Inha-ro, Michuhol-gu, Incheon, Republic of Korea. Electronic address:

Nanoplastics (NPs) are growing concerns for health and the environment, being widely distributed across marine, freshwater, air, and biological systems. Analyzing NPs in real environmental samples requires pretreatment, which has traditionally been complex and often leads to underestimation in actual samples, creating a gap between real-world conditions and research findings. In this study, we propose using anodic aluminum oxide (AAO) membrane as a direct Raman substrate for particles on a filter, achieving complete recovery during separation and concentration while simplifying the pretreatment stages.

View Article and Find Full Text PDF

In aquatic environments, the deposition behaviors of nanoplastics (NPs) are closely associated with interfacial interaction between NPs and iron (hydr)oxides minerals, which are typically coupled with solution chemistry and organic matter. However, the roles of solution chemistry and organic matter in the deposition behavior of NPs with iron (hydr)oxides minerals and related interfacial interaction mechanism are still poorly understood. In this study, the deposition behaviors of carboxyl-modified polystyrene nanoparticles (COOH-PSNPs) with magnetite were systematically investigated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!