Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
A new strategy is required to realize a low-cost stretchable electrode while realizing high stretchability, conductivity, and manufacturability. In this study, we fabricated a self-patterned stretchable electrode using a simple and scalable process. The stretchable electrode is composed of a bridged square-shaped (BSS) AgNW bundle mesh developed by liquid bridge evaporation and a stretchable polymer matrix patterned with a microcavity array. Owing to the BSS structure and microcavity array, which effectively concentrate the applied strain on the deformable square region of the BSS structure under tensile stretching, the stretchable electrode exhibits high stretchability with a low ΔR/R of 10.3 at a strain of 40%. Furthermore, by exploiting the self-patterning ability-attributable to the difference in the ability to form liquid bridges according to the distance between microstructures-we successfully demonstrated a stretchable AgNW bundle mesh with complex patterns without using additional patterning processes. In particular, stretchable electrodes were fabricated by spray coating and bar coating, which are widely used in industry for low-cost mass production. We believe that this study significantly contributes to the commercialization of stretchable electronics while achieving high performance and complex patterns, such as stretchable displays and electronic skin.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8621255 | PMC |
http://dx.doi.org/10.3390/nano11112865 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!