Self-Limitations of Heat Release in Coupled Core-Shell Spinel Ferrite Nanoparticles: Frequency, Time, and Temperature Dependencies.

Nanomaterials (Basel)

Department of Condensed Matter Physics, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 3, 121 16 Prague 2, Czech Republic.

Published: October 2021

We explored a series of highly uniform magnetic nanoparticles (MNPs) with a core-shell nanoarchitecture prepared by an efficient solvothermal approach. In our study, we focused on the water dispersion of MNPs based on two different CoFeO core sizes and the chemical nature of the shell (MnFeO and spinel iron oxide). We performed an uncommon systematic investigation of the time and temperature evolution of the adiabatic heat release at different frequencies of the alternating magnetic field (AMF). Our systematic study elucidates the nontrivial variations in the heating efficiency of core-shell MNPs concerning their structural, magnetic, and morphological properties. In addition, we identified anomalies in the temperature and frequency dependencies of the specific power absorption (SPA). We conclude that after the initial heating phase, the heat release is governed by the competition of the Brown and Néel mechanism. In addition, we demonstrated that a rational parameter sufficiently mirroring the heating ability is the mean magnetic moment per MNP. Our study, thus, paves the road to fine control of the AMF-induced heating by MNPs with fine-tuned structural, chemical, and magnetic parameters. Importantly, we claim that the nontrivial variations of the SPA with the temperature must be considered, e.g., in the emerging concept of MF-assisted catalysis, where the temperature profile influences the undergoing chemical reactions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8624666PMC
http://dx.doi.org/10.3390/nano11112848DOI Listing

Publication Analysis

Top Keywords

heat release
12
time temperature
8
nontrivial variations
8
temperature
5
magnetic
5
self-limitations heat
4
release coupled
4
coupled core-shell
4
core-shell spinel
4
spinel ferrite
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!