Hydrogenated crystalline TiO with oxygen vacancy (O) defect has been broadly investigated in recent years. Different from crystalline TiO, hydrogenated amorphous TiO for advanced photocatalytic applications is scarcely reported. In this work, we prepared hydrogenated amorphous TiO (HA-TiO) using a unique liquid plasma hydrogenation strategy, and demonstrated its highly visible-light photoactivity. Density functional theory combined with comprehensive analyses was to gain fundamental understanding of the correlation among the O concentration, electronic band structure, photon capturing, reactive oxygen species (ROS) generation, and photocatalytic activity. One important finding was that the narrower the bandgap HA-TiO possessed, the higher photocatalytic efficiency it exhibited. Given the narrow bandgap and extraordinary visible-light absorption, HA-TiO showed excellent visible-light photodegradation in rhodamine B (98.7%), methylene blue (99.85%), and theophylline (99.87) within two hours, as well as long-term stability. The total organic carbon (TOC) removal rates of rhodamine B, methylene blue, and theophylline were measured to 55%, 61.8%, and 50.7%, respectively, which indicated that HA-TiO exhibited high wastewater purification performance. This study provided a direct and effective hydrogenation method to produce reduced amorphous TiO which has great potential in practical environmental remediation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8625909 | PMC |
http://dx.doi.org/10.3390/nano11112801 | DOI Listing |
Nanomaterials (Basel)
December 2024
Institute for Energy and Materials Processes-Reactive Fluids, University of Duisburg-Essen, 47057 Duisburg, Germany.
Solid-state electrolytes for lithium-ion batteries, which enable a significant increase in storage capacity, are at the forefront of alternative energy storage systems due to their attractive properties such as wide electrochemical stability window, relatively superior contact stability against Li metal, inherently dendrite inhibition, and a wide range of temperature functionality. NASICON-type solid electrolytes are an exciting candidate within ceramic electrolytes due to their high ionic conductivity and low moisture sensitivity, making them a prime candidate for pure oxidic and hybrid ceramic-in-polymer composite electrolytes. Here, we report on producing pure and Y-doped Lithium Aluminum Titanium Phosphate (LATP) nanoparticles by spray-flame synthesis.
View Article and Find Full Text PDFSci Rep
January 2025
Key Laboratory for Information System of Mountainous Area and Protection of Ecological Environment of Guizhou Province, Guizhou Normal University, Guian, 550025, China.
Removal of accumulated dyes from the environment water bodies is essential to prevent further harm to humans. The development and design of new alternative nanoadsorbents that can conveniently, quickly, and efficiently improve the adsorption and removal efficiency of dyes from wastewater remains a huge challenge. An amorphous TiO with a magnetic core-shell-shell structure (FeO@PDA@a-TiO, denoted as FPaT) was constructed through a series of steps.
View Article and Find Full Text PDFMolecules
December 2024
CP2M-ESCPE Lyon, CNRS, University Claude Bernard Lyon 1, UMR 5128, 43 Bd du 11 Nov. 1918, CEDEX, 69616 Villeurbanne, France.
TiO:Eu nanoparticles with varying europium concentrations were successfully synthesized via a one-pot sol-gel approach using a molecular heterometallic single-source precursor (SSP) Eu-Ti. For comparison, nanomaterials with similar europium levels were also produced by impregnating europium salts onto the same TiO substrate. All the nanomaterials were thoroughly characterized using Eu elemental analysis, powder X-ray diffraction (XRD), scanning (SEM), transmission (TEM), scanning transmission electron microscopy (STEM), Brunauer-Emmett-Teller (BET) analysis, thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, and photoluminescence (PL).
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Institute of Materials and Surface Engineering, Faculty of Natural Science and Technology, Riga Technical University, Paula Valdena st. 3/7, LV-1048 Riga, Latvia.
Sintered porous mullite-alumina ceramics are obtained from the concentrated suspension of powdered raw materials such as kaolin, gamma and alpha AlO, and amorphous SiO, mainly by a solid-state reaction with the presence of a liquid phase. The modification of mullite ceramic is achieved by the use of micro- and nanosize TiO powders. The phase compositions were measured using an X-ray powder diffraction (XRD) Rigaku Ultima+ (Tokyo, Japan) and microstructures of the sintered specimens were analysed using scanning electron microscopy (SEM) Hitachi TM3000-TableTop (Tokyo, Japan).
View Article and Find Full Text PDFMaterials (Basel)
December 2024
MOE Key Laboratory of Advanced Micro-Structured Materials, Institute of Precision Optical Engineering (IPOE), School of Physics Science and Engineering, Tongji University, Shanghai 200092, China.
Considering the application of titanium nitride (TiN) films as a release layer in producing Wolter-I X-ray telescope mirror shells by the electroformed nickel replication (ENR) technique, this research pays attention to the influence of nanometer-scale thickness variation in the microstructure and physical properties of TiN films deposited by the pulsed direct current (DC) magnetron sputtering method. This topic has received limited attention in the existing literature. TiN films (9.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!