Probiotics Regulating Inflammation via NLRP3 Inflammasome Modulation: A Potential Therapeutic Approach for COVID-19.

Microorganisms

Hepatogastroenterology Unit, 2nd Department of Propaedeutic Internal Medicine, Medical School, National and Kapodistrian University of Athens, Attikon University General Hospital, 12462 Athens, Greece.

Published: November 2021

Inflammasomes are cytoplasmic multiprotein complexes formed by the host's immune system as a response to microbial infection and cellular damage. Many studies have revealed various regulators of NOD-, LRR-, and pyrin domain-containing protein 3 (NLRP3) inflammasome activation, while it has been recently shown that NLRP3 is implicated in COVID-19 pathogenesis. At the same time, probiotics counteract the inflammatory process and modulate cytokine release, thus influencing both innate and adaptive immune systems. Herein, we review the immunomodulatory potential of probiotics on the assembly of NLRP3 inflammasome, as well as the pathophysiological mechanisms supporting the use of probiotic bacteria for SARS-CoV-2 infection management, presenting evidence from preclinical studies of the last decade: in vivo, ex vivo, and mixed trials. Data show that probiotics intake is related to NLRP3 inflammasome attenuation and lower levels of inflammation markers, highlighting the beneficial effects of probiotics on inflammatory conditions. Currently, none of the ongoing clinical trials evaluating the effectiveness of probiotics intake in humans with COVID-19 has been completed. However, evidence from preclinical studies indicates that probiotics may block virus invasion and replication through their metabolites, bacteriocins, and their ability to block Angiotensin-Converting Enzyme 2 (ACE2), and by stimulating the immune response through NLRP3 inflammasome regulation. In this review, the beneficial effects of probiotics in the inflammatory process through NLRP3 inflammasome attenuation are presented. Furthermore, probiotics may target SARS-CoV-2 both by blocking virus invasion and replication and by stimulating the immune response through NLRP3 inflammasome regulation. Heterogeneity of the results-due to, among others, different bacterial strains and their metabolites, forms, dosage, and experimental designs-indicates the need for more extensive research.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8624812PMC
http://dx.doi.org/10.3390/microorganisms9112376DOI Listing

Publication Analysis

Top Keywords

nlrp3 inflammasome
28
probiotics
9
nlrp3
8
inflammatory process
8
evidence preclinical
8
preclinical studies
8
probiotics intake
8
inflammasome attenuation
8
beneficial effects
8
effects probiotics
8

Similar Publications

Farnesol (FAR) is a sesquiterpene alcohol that exists in many fruits and vegetables and possesses promising anti-inflammatory and antioxidant activities. Cadmium (Cd) is an environmental pollutant known for its serious health effects. Liver injury associated with oxidative stress is a hazardous consequence of exposure to Cd.

View Article and Find Full Text PDF

As a key inflammatory factor, the nucleotide-binding oligomerization domain (NOD)-like receptor protein 3 (NLRP3) inflammasome plays a crucial role in neuroinflammation and the progression of neurodegenerative diseases. Dysregulation of NLRP3 signaling can trigger various inflammatory responses in the brain, contributing to the development of neurodegenerative diseases such as ischemic stroke, vascular dementia (VaD), Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS). Therefore, the NLRP3 signaling pathway is a promising therapeutic target for the treatment of neurodegenerative diseases, including VaD.

View Article and Find Full Text PDF

NLRP3 inflammasome-modulated angiogenic function of EPC via PI3K/ Akt/mTOR pathway in diabetic myocardial infarction.

Cardiovasc Diabetol

January 2025

Department of Clinical Pharmacy, School of Preclinical Medicine and Clinical Pharmacy, China Pharmaceutical University, 24 Tong jia Lane, Nanjing, 210009, People's Republic of China.

Background: Inflammatory diseases impair the reparative properties of endothelial progenitor cells (EPC); however, the involvement of diabetes in EPC dysfunction associated with myocardial infarction (MI) remains unknown.

Methods: A model was established combining high-fat diet (HFD)/streptozotocin (STZ)-induced diabetic mice with myocardial infarction. The therapeutic effects of transplanted wild-type EPC, Nlrp3 knockout EPC, and Nlrp3 overexpression EPC were evaluated.

View Article and Find Full Text PDF

Helicobacter pylori infection promotes M1 macrophage polarization and gastric inflammation by activation of NLRP3 inflammasome via TNF/TNFR1 axis.

Cell Commun Signal

January 2025

Department of Gastroenterology, Jiangxi Provincial Key Laboratory of Digestive Diseases, Jiangxi Clinical Research Center for Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China.

Background: Macrophages play a crucial role in chronic gastritis induced by the pathogenic Helicobacter pylori (H. pylori) infection. NLRP3 inflammasome has emerged as an important component of inflammatory processes.

View Article and Find Full Text PDF

Combination therapies and other therapeutic approaches targeting the NLRP3 inflammasome and neuroinflammatory pathways: a promising approach for traumatic brain injury.

Immunopharmacol Immunotoxicol

January 2025

Tobacco and Health Research Center, Endocrinology and Metabolism Research Center, Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran.

Traumatic brain injury (TBI) precipitates a neuroinflammatory cascade, with the NLRP3 inflammasome emerging as a critical mediator. This review scrutinizes the complex activation pathways of the NLRP3 inflammasome by underscoring the intricate interplay between calcium signaling, mitochondrial disturbances, redox imbalances, lysosomal integrity, and autophagy. It is hypothesized that a combination therapy approach-integrating NF-κB pathway inhibitors with NLRP3 inflammasome antagonists-holds the potential to synergistically dampen the inflammatory storm associated with TBI.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!