A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: Attempt to read property "Count" on bool

Filename: helpers/my_audit_helper.php

Line Number: 3100

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Insights into the Bacterial and Nitric Oxide-Induced Salt Tolerance in Sugarcane and Their Growth-Promoting Abilities. | LitMetric

Insights into the Bacterial and Nitric Oxide-Induced Salt Tolerance in Sugarcane and Their Growth-Promoting Abilities.

Microorganisms

Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China.

Published: October 2021

AI Article Synopsis

  • * The study identifies a salt-tolerant PGPR strain, ASN-1, capable of thriving in high salt concentrations and exhibiting numerous plant-growth-promoting properties, including the production of growth hormones and nutrients.
  • * The combined application of PGPR and NO significantly boosts sugarcane growth under saline conditions by improving water retention, reducing oxidative stress, and enhancing the plant's stress-resistance mechanisms, implying a potential for more sustainable agriculture.

Article Abstract

Soil salinity causes severe environmental stress that affects agriculture production and food security throughout the world. Salt-tolerant plant-growth-promoting rhizobacteria (PGPR) and nitric oxide (NO), a distinctive signaling molecule, can synergistically assist in the alleviation of abiotic stresses and plant growth promotion, but the mechanism by which this happens is still not well known. In the present study, in a potential salt-tolerant rhizobacteria strain, ASN-1, growth up to 15% NaCl concentration was achieved with sugarcane rhizosphere soil. Based on 16S-rRNA gene sequencing analysis, the strain ASN-1 was identified as a . Strain ASN-1 exhibits multiple plant-growth-promoting attributes, such as the production of indole-3-acetic acid, 1-aminocyclopropane-1-carboxylate deaminase, siderophores, HCN, ammonia, and exopolysaccharides as well as solubilized phosphate solubilization. Biofilm formation showed that NO enhanced the biofilm and root colonization capacity of the PGPR strain ASN-1 with host plants, evidenced by scanning electron microscopy. The greenhouse study showed that, among the different treatments, the combined application of PGPR and sodium nitroprusside (SNP) as an NO donor significantly ( ≤ 0.05) enhanced sugarcane plant growth by maintaining the relative water content, electrolyte leakage, gas exchange parameters, osmolytes, and Na/K ratio. Furthermore, PGPR and SNP fertilization reduced the salinity-induced oxidative stress in plants by modulating the antioxidant enzyme activities and stress-related gene expression. Thus, it is believed that the acquisition of advanced information about the synergistic effect of salt-tolerant PGPR and NO fertilization will reduce the use of harmful chemicals and aid in eco-friendly sustainable agricultural production under salt stress conditions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8623439PMC
http://dx.doi.org/10.3390/microorganisms9112203DOI Listing

Publication Analysis

Top Keywords

strain asn-1
16
plant growth
8
pgpr
5
insights bacterial
4
bacterial nitric
4
nitric oxide-induced
4
oxide-induced salt
4
salt tolerance
4
tolerance sugarcane
4
sugarcane growth-promoting
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: