The microbiome is an emerging key co-factor in the development of esophageal cancer, the sixth leading cause of cancer death worldwide. However, there is a paucity of data delineating how the microbiome contributes to the pathobiology of the two histological subtypes of esophageal cancer: esophageal squamous cell carcinoma and esophageal adenocarcinoma. This critical knowledge gap is partially due to inadequate modeling of host-microbiome interactions in the etiology of esophageal cancers. Recent advances have enabled progress in this field. Three dimensional (3D) organoids faithfully recapitulate the structure and function of the normal, preneoplastic, and neoplastic epithelia of the esophagus ex vivo and serve as a platform translatable for applications in precision medicine. Elsewhere in the gastrointestinal (GI) tract, the co-culture of 3D organoids with the bacterial microbiome has fostered insight into the pathogenic role of the microbiome in other GI cancers. Herein, we will summarize our current understanding of the relationship between the microbiome and esophageal cancer, discuss 3D organoid models of esophageal homeostasis, review analogous models of host-microbiome interactions in other GI cancers, and advocate for the application of these models to esophageal cancers. Together, we present a promising, novel approach with the potential to ameliorate the burden of esophageal cancer-related morbidity and mortality via improved prevention and therapeutic interventions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8622040 | PMC |
http://dx.doi.org/10.3390/microorganisms9112182 | DOI Listing |
Cancers (Basel)
January 2025
Head and Neck Oncology Group, Centre for Host Microbiome Interaction, King's College London, Hodgkin Building, London SE1 1UL, UK.
Background: Cancer-associated fibroblasts have been reported to play a central role in driving cancer progression, promoting metastasis, and conferring resistance to therapy in HNSCC.
Methods: Indirect and direct co-culture models of HPV-positive and HPV-negative HNSCC cells with fibroblasts were developed to study the effect of fibroblasts on cancer cells. ELISA was used to measure IL-6 secretion in these models.
Cell
January 2025
Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, AB T6G 2E1, Canada; APC Microbiome Ireland, University College Cork, Cork T12 YT20, Munster, Ireland; School of Microbiology, University College Cork, Cork T12 YT20, Munster, Ireland; Department of Medicine, University College Cork, Cork T12 YT20, Munster, Ireland; Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E1, Canada. Electronic address:
Industrialization adversely affects the gut microbiome and predisposes individuals to chronic non-communicable diseases. We tested a microbiome restoration strategy comprising a diet that recapitulated key characteristics of non-industrialized dietary patterns (restore diet) and a bacterium rarely found in industrialized microbiomes (Limosilactobacillus reuteri) in a randomized controlled feeding trial in healthy Canadian adults. The restore diet, despite reducing gut microbiome diversity, enhanced the persistence of L.
View Article and Find Full Text PDFZool Res
January 2025
Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China. E-mail:
Animal adaptation to environmental challenges is a complex process involving intricate interactions between the host genotype and gut microbiome composition. The gut microbiome, highly responsive to external environmental factors, plays a crucial role in host adaptability and may facilitate local adaptation within species. Concurrently, the genetic background of host populations influences gut microbiome composition, highlighting the bidirectional relationship between host and microbiome.
View Article and Find Full Text PDFClin Oral Investig
January 2025
Periodontology Unit, Centre for Host Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, UK.
Objective: To evaluate the possible additional clinical benefit from autologous platelet concentrate (APC) treatment adjunct to non-surgical periodontal therapy (NSPT).
Methods: Electronic (MEDLINE/Embase/Cochrane/MedNar/CORE) and hand searches were conducted. Following studies selection, evidence tables were formed, and meta-analyses were performed for the following outcomes: probing pocket depth (PPD) reduction, clinical attachment level (CAL) gain, and bleeding on probing (BoP) reduction.
Cell
January 2025
Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel; Division of Microbiome & Cancer, DKFZ, Heidelberg, Germany. Electronic address:
Host-microbiome-dietary interactions play crucial roles in regulating human health, yet their direct functional assessment remains challenging. We adopted metagenome-informed metaproteomics (MIM), in mice and humans, to non-invasively explore species-level microbiome-host interactions during commensal and pathogen colonization, nutritional modification, and antibiotic-induced perturbation. Simultaneously, fecal MIM accurately characterized the nutritional exposure landscape in multiple clinical and dietary contexts.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!