Drought is the most critical environmental factor across the continents affecting food security. Roots are the prime organs for water and nutrient uptake. Fine tuning between water uptake, efficient use and loss determines the genotypic response to water limitations. Targeted breeding for root system architecture needs to be explored to improve water use efficiency in legumes. Hence, the present study was designed to explore root system architecture in lentil germplasm in response to drought. A set of 119 lentil ( Medik.) genotypes was screened in controlled conditions to assess the variability in root traits in relation to drought tolerance at seedling stage. We reported significant variation for different root traits in lentil germplasm. Total root length, surface area, root volume and root diameter were correlated to the survival and growth under drought. Among the studied genotypes, the stress tolerance index varied 0.19-1.0 for survival and 0.09-0.90 for biomass. Based on seedling survival and biomass under control and drought conditions, 11 drought tolerant genotypes were identified, which may be investigated further at a physiological and molecular level for the identification of the genes involved in drought tolerance. Identified lines may also be utilised in a lentil breeding program.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8621538 | PMC |
http://dx.doi.org/10.3390/plants10112410 | DOI Listing |
J Nat Prod
January 2025
Department of Chemical and Biological engineering, School of Engineering and Technology, National University of Mongolia, Ulaanbaatar 14201, Mongolia.
A chemical examination of a root extract of led to the isolation and identification of 23 compounds, including oxazole-type alkaloids and isoflavonoid derivatives. Notably, three oxazole-type alkaloids (, , and ) and two isoflavonoid derivatives ( and ) were obtained from a natural source for the first time. In addition, derived 2,5-diphenyloxazoles and their derivatives were synthesized.
View Article and Find Full Text PDFEquine Vet J
January 2025
University of Liverpool, Institute of Life Course and Medical Sciences, Liverpool, UK.
Background: Equine odontoclastic tooth resorption and hypercementosis (EOTRH) is a painful disorder primarily affecting the incisor teeth of horses over 15 years of age. Clinical signs of the disease include prehension problems, halitosis and in severe cases weight loss. The disease predominately affects the reserve crown and presents as a loss of dental tissue and excessive build-up of cementum.
View Article and Find Full Text PDFMed Sci Monit
January 2025
Department of Endodontics, Faculty of Dentistry, Dicle University, Diyarbakir, Turkey.
BACKGROUND Different temperature conditions can affect the efficiency of irrigation solutions and consequently the ability of canal sealers to bond to root canal walls. The aim of this endodontic study was to evaluate the effect of irrigation solutions at different temperatures on the bond strength of a bioceramic-based root canal sealer. MATERIAL AND METHODS Root canal preparations were completed through irrigation with the following solutions: Group 1 was irrigated with 5 ml NaOCl (sodium hypochlorite) +5 ml EDTA (Ethylenediamine tetra-acetic acid) (22°C); Group 2 was irrigated with 5 ml NaOCl +5 ml EDTA (37°C); Group 3 was irrigated with 5 ml NaOCl +5 ml GA (Glycolic acid) (22°C); Group 4 was irrigated with 5 ml NaOCl +5 ml GA (37°C), Group 5 was irrigated with 20 ml Dual Rinse® HEDP (Etidronate) - NaOCl mixture (22°C); and Group 6 was irrigated with 20 ml of Dual Rinse® HEDP mixture (37°C).
View Article and Find Full Text PDFMagn Reson Med
January 2025
Department of Radiology, University of Missouri, Columbia, Missouri, USA.
Purpose: The aim of the work is to develop a cascaded diffusion-based super-resolution model for low-resolution (LR) MR tagging acquisitions, which is integrated with parallel imaging to achieve highly accelerated MR tagging while enhancing the tag grid quality of low-resolution images.
Methods: We introduced TagGen, a diffusion-based conditional generative model that uses low-resolution MR tagging images as guidance to generate corresponding high-resolution tagging images. The model was developed on 50 patients with long-axis-view, high-resolution tagging acquisitions.
Am J Bot
January 2025
Pacific Biosciences Research Center, University of Hawai'i at Mānoa, Honolulu, HI, USA.
Premise: The ability of plants to adapt or acclimate to climate change is inherently linked to their interactions with symbiotic microbes, notably fungi. However, it is unclear whether fungal symbionts from different climates have different impacts on the outcome of plant-fungal interactions, especially under environmental stress.
Methods: We tested three provenances of fungal inoculum (originating from dry, moderate or wet environments) with one host plant genotype exposed to three soil moisture regimes (low, moderate and high).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!