Molybdenum ions (Mo) can improve plants' nutritional value primarily by enhancing nitrogenous metabolism. In this study, the comparative effects of seed priming using Mo were evaluated among sproutings of species/cultivars, including (CA1), (CA2), and (CA3). Mo impacts on growth, metabolism (e.g., nitrogen and phenolic metabolism, pigment and total nutrient profiles), and biological activities were assayed. Principal component analysis (PCA) was used to correlate Mo-mediated impacts. The results showed that Mo induced photosynthetic pigments that resulted in an improvement in growth and increased biomass. The N content was increased 0.3-fold in CA3 and 0.2-fold in CA1 and CA2. Enhanced nitrogen metabolism by Mo provided the precursors for amino acids, protein, and lipid biosynthesis. At the secondary metabolic level, phenolic metabolism-related precursors and enzyme activities were also differentially increased in species/cultivars. The observed increase in metabolism resulted in the enhancement of the antioxidant (2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH) free radical scavenging, 2,2-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), ferric reducing antioxidant power (FRAP)) and antidiabetic potential (Glycemic index (GI) and inhibition activity of α-amylase, and α-glucosidase) of species. The antioxidant activity increased 20% in CA3, 14% in CA1, and 8% in CA2. Furthermore, PCA showed significant variations not only between Mo-treated and untreated samples but also among species. Overall, this study indicated that the sprouts of species have tremendous potential for commercial usage due to their high nutritive value, which can be enhanced further with Mo treatment to accomplish the demand for nutritious feed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8625590PMC
http://dx.doi.org/10.3390/plants10112387DOI Listing

Publication Analysis

Top Keywords

ca1 ca2
12
metabolism
6
potential molybdenum
4
molybdenum priming
4
priming metabolism
4
metabolism nutritive
4
nutritive spp
4
spp sprouts
4
sprouts molybdenum
4
molybdenum ions
4

Similar Publications

Depressive symptoms in older adults are associated with changes in stress-related markers, functional connectivity and brain volume.

Alzheimers Res Ther

January 2025

Normandie Univ, UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging of Neurological Disorders", NeuroPresage Team, Institut Blood and Brain @ Caen-Normandie, GIP Cyceron, Bd Henri Becquerel, BP 5229, Caen, 14074, France.

Background: Subclinical depressive symptoms increase the risk of developing Alzheimer's disease (AD). The neurobiological mechanisms underlying this link may involve stress system dysfunction, notably related to the hippocampus which is particularly sensitive to AD. We aimed to investigate the links between blood stress markers and changes in brain regions involved in the stress response in older adults with or without subclinical depressive symptoms.

View Article and Find Full Text PDF

Objective: Age-related hippocampal atrophy is associated with memory loss in older adults, and certain hippocampal subfields are more vulnerable to age-related atrophy than others. Cardiorespiratory fitness (CRF) may be an important protective factor for preserving hippocampal volume, but little is known about how CRF relates to the volume of specific hippocampal subfields, and whether associations between CRF and hippocampal subfield volumes are related to episodic memory performance. To address these gaps, the current study evaluates the associations among baseline CRF, hippocampal subfield volumes, and episodic memory performance in cognitively unimpaired older adults from the Investigating Gains in Neurocognition Trial of Exercise (IGNITE) (NCT02875301).

View Article and Find Full Text PDF

Psychological distress, including anxiety or mood disorders, emanates from the onset of chronic/unpredictable stressful events. Symptoms in the form of maladaptive behaviors are learned and difficult to treat. While the origin of stress-induced disorders seems to be where learning and stress intersect, this relationship and molecular pathways involved remain largely unresolved.

View Article and Find Full Text PDF

Introduction: Alzheimer's disease (AD), primary age-related tauopathy (PART), and chronic traumatic encephalopathy (CTE) all feature hyperphosphorylated tau (p-tau)-immunoreactive neurofibrillary degeneration, but differ in neuroanatomical distribution and progression of neurofibrillary degeneration and amyloid beta (Aβ) deposition.

Methods: We used Nanostring GeoMx Digital Spatial Profiling to compare the expression of 70 proteins in neurofibrillary tangle (NFT)-bearing and non-NFT-bearing neurons in hippocampal CA1, CA2, and CA4 subregions and entorhinal cortex of cases with autopsy-confirmed AD (n = 8), PART (n = 7), and CTE (n = 5).

Results: There were numerous subregion-specific differences related to Aβ processing, autophagy/proteostasis, inflammation, gliosis, oxidative stress, neuronal/synaptic integrity, and p-tau epitopes among these different disorders.

View Article and Find Full Text PDF

Protective effect of sub-hypothermic mechanical perfusion combined with membrane lung oxygenation on a yorkshire model of brain injury after traumatic blood loss.

Chin J Traumatol

December 2024

Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Department of Orthopedics, The Fourth Medical Center, Chinese PLA General Hospital, Beijing, 100048, China. Electronic address:

Purpose: To investigate the protective effect of sub-hypothermic mechanical perfusion combined with membrane lung oxygenation on ischemic hypoxic injury of yorkshire brain tissue caused by traumatic blood loss.

Methods: This article performed a random controlled trial. Brain tissue of 7 yorkshire was selected and divided into the sub-low temperature anterograde machine perfusion group (n = 4) and the blank control group (n = 3) using the random number table method.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!