Adult plant resistance in wheat is an achievement of the breeding objective because of its durability in comparison with race-specific resistance. Partial resistance to wheat stripe rust disease was evaluated under greenhouse and field conditions during the period from 2016 to 2021. Misr 3, Sakha 95, and Giza 171 were the highest effective wheat genotypes against f. sp. races. Under greenhouse genotypes, Sakha 94, Giza 168, and Shandaweel1 were moderately susceptible, had the longest latent period and lowest values of the length of stripes and infection frequency at the adult stage. Partial resistance levels under field conditions were assessed, genotypes Sakha 94, Giza 168, and Shandaweel1 exhibited partial resistance against the disease. Leaf tip necrosis (LTN) was noted positively in three genotypes Sakha 94, Sakha 95, and Shandaweel1. Molecular analyses of were performed for , , and markers. Only Sakha 94 and Shandaweel1 proved to carry the resistance allele at both phenotypic and genotypic levels. Scanning electron microscopy (SEM) observed that the susceptible genotypes were colonized extensively on leaves, but on the slow-rusting genotype, the pustules were much less in number, diminutive, and poorly sporulation, which is similar to the pustule of NIL Jupateco73 'R'.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8620947PMC
http://dx.doi.org/10.3390/plants10112262DOI Listing

Publication Analysis

Top Keywords

partial resistance
16
sakha giza
12
genotypes sakha
12
adult plant
8
resistance
8
plant resistance
8
wheat genotypes
8
stripe rust
8
rust disease
8
resistance wheat
8

Similar Publications

A Bioinspired Virus-Like Mechano-Bactericidal Nanomotor for Ocular Multidrug-Resistant Bacterial Infection Treatment.

Adv Mater

January 2025

Eye Institute of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Key Laboratory of Eye Diseases, School of Ophthalmology, Shandong First Medical University, Qingdao, 266071, P. R. China.

Multidrug-resistant (MDR) bacteria and their associated biofilms are major causative factors in eye infections, often resulting in blindness and presenting considerable global health challenges. Presently, mechano-bactericidal systems, which combine distinct topological geometries with mechanical forces to physically induce bacterial apoptosis, show promising potential. However, the physical interaction process between current mechano-bactericidal systems and bacteria is generally based on passive diffusion or Brownian motion and lacks the force required for biofilm penetration; thus, featuring low antibacterial efficacy.

View Article and Find Full Text PDF

Protein-activated kinases mediate spine morphogenesis and synaptic plasticity. PAK3 is part of the p21-activated kinases (PAKs) family of Ras-signaling serine/threonine kinases. Pathogenic variants in the X-linked gene PAK3 have been described in patients with neurodevelopmental syndromes.

View Article and Find Full Text PDF

Structural determinants of oxygen resistance and Zn-mediated stability of the [FeFe]-hydrogenase from .

Proc Natl Acad Sci U S A

January 2025

Laboratory for Protein Crystallography, Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan.

[FeFe]-hydrogenases catalyze the reversible two-electron reduction of two protons to molecular hydrogen. Although these enzymes are among the most efficient H-converting biocatalysts in nature, their catalytic cofactor (termed H-cluster) is irreversibly destroyed upon contact with dioxygen. The [FeFe]-hydrogenase CbA5H from has a unique mechanism to protect the H-cluster from oxygen-induced degradation.

View Article and Find Full Text PDF

Obstructive Sleep Apnea (OSA) is a prevalent sleep disorder marked by repeated episodes of partial or complete upper airway obstruction during sleep, which leads to intermittent hypoxia and fragmented sleep. These disruptions negatively impact cardiovascular health, metabolic function, and overall quality of life. Obesity is a major modifiable risk factor for OSA, as it contributes to both anatomical and physiological mechanisms that increase the likelihood of airway collapse during sleep.

View Article and Find Full Text PDF

Plasma metabolome reveals altered oxidative stress, inflammation, and amino acid metabolism in dogs with idiopathic epilepsy.

Epilepsia

January 2025

Equine and Companion Animal Nutrition, Department of Morphology, Imaging, Orthopedics, Rehabilitation, and Nutrition, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium.

Objective: Idiopathic epilepsy (IE) is the most common chronic neurological disease in dogs and an established natural animal model for human epilepsy types with genetic and unknown etiology. However, the metabolic pathways underlying IE remain largely unknown.

Methods: Plasma samples of healthy dogs (n = 39) and dogs with IE (n = 49) were metabolically profiled (n = 121 known target metabolites) and fingerprinted (n = 1825 untargeted features) using liquid chromatography coupled to mass spectrometry.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!