Luteolin is a natural drug used as an antioxidant and anti-inflammatory, but unfortunately, it possesses low water solubility, which hinders its delivery via the skin. The main objective of this study was to prepare a luteolin-loaded nanosuspension by the antisolvent precipitation/sonication technique and study the effects of four stabilizers (two nonionic stabilizers, Pluronic F127 and Tween 80, and two polymeric stabilizers, HPMC and alginate) on the physicochemical properties of the prepared formulations. The selected formulations were incorporated into a gel base to evaluate their skin permeability and anti-inflammatory efficacy. The particle size was in the nanosize range (in the range from 468.1 ± 18.6 nm to 1024.8 ± 15.9 nm), while the zeta potential was negative and in the range from -41.7 ± 6.3 mV to -15.3 ± 1.9 mV. In particular, alginate-stabilized nanosuspensions showed the smallest particle size, the highest zeta potential value, and excellent stability due to the dual stabilizing effects (electrostatic and steric effects). The DSC results revealed a less crystalline structure of luteolin in lyophilized NS2 and NS12. Formulations stabilized by 1% Pluronic (NS2) and 2% alginate (NS12) were incorporated into a carbopol 940 gel base and showed good organoleptic character (homogenous with no evidenced phase separation or grittiness). In vitro dissolution studies showed that NS12 enhanced luteolin release rates, indicating the effect of particle size on the drug release pattern. On the other hand, NS2 showed enhanced skin permeability and anti-inflammatory effect in a carrageenan-induced paw edema model, revealing the surface activity role of the stabilizers. In conclusion, while alginate increased the nanosuspension stability by means of dual stabilizing effects, Pluronic F127 improved the skin delivery and pharmacodynamic efficacy of luteolin.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8621241PMC
http://dx.doi.org/10.3390/pharmaceutics13111812DOI Listing

Publication Analysis

Top Keywords

particle size
12
pluronic f127
8
gel base
8
skin permeability
8
permeability anti-inflammatory
8
zeta potential
8
stability dual
8
dual stabilizing
8
stabilizing effects
8
luteolin
5

Similar Publications

Inorganic-organic hybrid nanoparticles with carbonate-triggered emission-colour-shift.

Dalton Trans

January 2025

Karlsruhe Institute of Technology (KIT), Institute for Inorganic Chemistry, Engesserstrasse 15, 76131 Karlsruhe, Germany.

(Eu[PTC])(Eu[TREN-1,2-HOPO]) inorganic-organic hybrid nanoparticles (IOH-NPs) contain Eu, tris[(1-hydroxy-2-oxo-1,2-dihydropyridine-6-carboxamido)ethyl]amine (TREN-1,2-HOPO) and perylene-3,4,9,10-tetracarboxylate (PTC). The IOH-NPs are prepared in water and exhibit a rod-type shape, with a length of 60 nm and a diameter of 5 nm. Particle size and chemical composition are examined by different methods (SEM, DLS, FT-IR, TG, C/H/N analysis).

View Article and Find Full Text PDF

Purpose: To investigate changes in fluid reservoir turbidity parameters over time and its influence on visual performance in eyes with ocular surface disorders (OSD) wearing scleral contact lenses (SL).

Methods: Thirteen eyes with OSD were assessed for corrected distance visual acuity, contrast sensitivity (CS) and fluid reservoir turbidity using anterior segment optical coherence tomography at baseline, after 5 min and 0.5, 1, 2, 3 and 4 h of SL wear on day 1 and after 1 month.

View Article and Find Full Text PDF

Nuclear Waste Tank Emission Contributions to Particle Size Distribution.

Health Phys

January 2025

Atmospheric Technologies Group, Savannah River National Laboratory, Aiken, SC.

Pollutants from anthropogenic activities including industrial processes are ubiquitous to the environment. To understand the impact from industrial aerosol on climate and human health, industrial aerosol needs to be better characterized. In this study, particle number concentrations were used as a proxy for atmospheric pollutants, which include both particles and gases.

View Article and Find Full Text PDF

A novel employment of single particle-inductively coupled plasma-mass spectrometry (SP-ICP-MS) was developed, where a microextraction (ME) probe is used to sample nanoparticles from a surface and analyze them in a single analytical step. The effects of several parameters on the performance of ME-SP-ICP-MS were investigated, including the flow rate, choice of carrier solution, particle size, and the design of the microextraction probe head itself. The optimized ME-SP-ICP-MS technique was used to compare the extraction efficiency (EE, defined as the ratio of particles measured to particles deposited on the surface) of the commercial probe head to a newly designed SP polyether ether ketone (PEEK) probe head.

View Article and Find Full Text PDF

Interface Optimization and Thermal Conductivity of Cu/Diamond Composites by Spark Plasma Sintering Process.

Nanomaterials (Basel)

January 2025

Guangdong Provincial Key Laboratory of Electronic Functional Materials and Devices, Huizhou University, Huizhou 516001, China.

Cu/Diamond (Cu/Dia) composites are regarded as next-generation thermal dissipation materials and hold tremendous potential for use in future high-power electronic devices. The interface structure between the Cu matrix and the diamond has a significant impact on the thermophysical properties of the composite materials. In this study, Cu/Dia composite materials were fabricated using the Spark Plasma Sintering (SPS) process.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!