Polymeric Scaffolds for Dental, Oral, and Craniofacial Regenerative Medicine.

Molecules

Craniofacial Stem Cells and Tissue Engineering Laboratory, Faculty of Dentistry, McGill University, Montreal, QC H3A 0C7, Canada.

Published: November 2021

Dental, oral, and craniofacial (DOC) regenerative medicine aims to repair or regenerate DOC tissues including teeth, dental pulp, periodontal tissues, salivary gland, temporomandibular joint (TMJ), hard (bone, cartilage), and soft (muscle, nerve, skin) tissues of the craniofacial complex. Polymeric materials have a broad range of applications in biomedical engineering and regenerative medicine functioning as tissue engineering scaffolds, carriers for cell-based therapies, and biomedical devices for delivery of drugs and biologics. The focus of this review is to discuss the properties and clinical indications of polymeric scaffold materials and extracellular matrix technologies for DOC regenerative medicine. More specifically, this review outlines the key properties, advantages and drawbacks of natural polymers including alginate, cellulose, chitosan, silk, collagen, gelatin, fibrin, laminin, decellularized extracellular matrix, and hyaluronic acid, as well as synthetic polymers including polylactic acid (PLA), polyglycolic acid (PGA), polycaprolactone (PCL), poly (ethylene glycol) (PEG), and Zwitterionic polymers. This review highlights key clinical applications of polymeric scaffolding materials to repair and/or regenerate various DOC tissues. Particularly, polymeric materials used in clinical procedures are discussed including alveolar ridge preservation, vertical and horizontal ridge augmentation, maxillary sinus augmentation, TMJ reconstruction, periodontal regeneration, periodontal/peri-implant plastic surgery, regenerative endodontics. In addition, polymeric scaffolds application in whole tooth and salivary gland regeneration are discussed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8621873PMC
http://dx.doi.org/10.3390/molecules26227043DOI Listing

Publication Analysis

Top Keywords

regenerative medicine
16
polymeric scaffolds
8
dental oral
8
oral craniofacial
8
doc regenerative
8
regenerate doc
8
doc tissues
8
salivary gland
8
polymeric materials
8
extracellular matrix
8

Similar Publications

Inducible protein switches are currently limited for use in tissues and organisms because common inducers cannot be controlled with precision in space and time in optically dense settings. Here, we introduce a protein that can be reversibly toggled with a small change in temperature, a stimulus that is both penetrant and dynamic. This protein, called Melt (Membrane localization using temperature) oligomerizes and translocates to the plasma membrane when temperature is lowered.

View Article and Find Full Text PDF

Craniometaphyseal dysplasia (CMD), a rare craniotubular disorder, occurs in an autosomal dominant (AD) or autosomal recessive (AR) form. CMD is characterized by hyperostosis of craniofacial bones and metaphyseal flaring of long bones. Many patients with CMD suffer from neurological symptoms.

View Article and Find Full Text PDF

Remodeling the Proinflammatory Microenvironment in Osteoarthritis through Interleukin-1 Beta Tailored Exosome Cargo for Inflammatory Regulation and Cartilage Regeneration.

ACS Nano

January 2025

National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu 610064, P. R. China.

Osteoarthritis (OA) presents a significant therapeutic challenge, with few options for preserving joint cartilage and repairing associated tissue damage. Inflammation is a pivotal factor in OA-induced cartilage deterioration and synovial inflammation. Recently, exosomes derived from human umbilical cord mesenchymal stem cells (HucMSCs) have gained recognition as a promising noncellular therapeutic modality, but their use is hindered by the challenge of harvesting a sufficient number of exosomes with effective therapeutic efficacy.

View Article and Find Full Text PDF

[Research progress of bioactive scaffolds in repair and regeneration of osteoporotic bone defects].

Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi

January 2025

Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P. R. China.

Objective: To summarize the research progress of bioactive scaffolds in the repair and regeneration of osteoporotic bone defects.

Methods: Recent literature on bioactive scaffolds for the repair of osteoporotic bone defects was reviewed to summarize various types of bioactive scaffolds and their associated repair methods.

Results: The application of bioactive scaffolds provides a new idea for the repair and regeneration of osteoporotic bone defects.

View Article and Find Full Text PDF

Exosome-Like Vesicles from Callus Enhanced Wound Healing by Reducing LPS-Induced Inflammation.

J Microbiol Biotechnol

November 2024

Preclinical Research Center, Daegu Gyeongbuk Medical Innovation Foundation (K-MEDI hub), Daegu 41061, Republic of Korea.

(LE), a medicinal plant from the Boraginaceae family, is traditionally used in East Asia for its therapeutic effects on skin conditions, including infections, inflammation, and wounds. Recently, the role of extracellular vesicles (EVs) as mediators of intercellular communication that regulate inflammation and promote tissue regeneration has garnered increasing attention in the field of regenerative medicine. This study investigates exosome-like vesicles derived from LE callus (LELVs) and their potential in enhancing wound healing.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!