Lawesson's reagent (LR) is a well-known classic example of a compound with unique construction and unusual chemical behavior, with a wide range of applications in synthetic organic chemistry. Its main functions were rounded for the thionation of various carbonyl groups in the early days, with exemplary results. However, the role of Lawesson's reagent in synthesis has changed drastically, and now its use can help the chemistry community to understand innovative ideas. These include constructing biologically valuable heterocycles, coupling reactions, and the thionation of natural compounds. The ease of availability and the convenient usage of LR as a thionating agent made us compile a review on the new diverse applications on some common functional groups, such as ketones, esters, amides, alcohols, and carboxylic acids, with biological applications. Since the applications of LR are now diverse, we have also included some new classes of heterocycles such as thiazepines, phosphine sulfides, thiophenes, and organothiophosphorus compounds. Thionation of some biologically essential steroids and terpenoids has also been compiled. This review discusses the recent insights into and synthetic applications of this famous reagent from 2009 to January 2021.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8618327 | PMC |
http://dx.doi.org/10.3390/molecules26226937 | DOI Listing |
Inorg Chem
December 2024
Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Tokyo 113-8656, Japan.
Sulfur, a group 16 element, can substitute the oxygen sites of metal oxides, potentially providing them with unique properties and enabling new applications. Polyoxometalates (POMs) are anionic metal oxide clusters with wide structural diversity owing to arbitrary selection of their constituting metal atoms. However, substitution of the oxygen sites of POMs with sulfur atoms has been rarely explored.
View Article and Find Full Text PDFJ Org Chem
November 2024
School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan.
RA-III acetate was treated with Lawesson's reagent to afford [Tyr-3-Ψ(CS-NH)-Ala-4]RA-III acetate. Treatment of this product with Hg(OAc)/LiCO and then methanol gave an oxazole intermediate. Acid-catalyzed arylation of the methylene carbon atom on the oxazole ring and subsequent partial hydrolysis of the oxazole ring in the resultant compounds afforded RA-VII analogues having an aromatic amino acid at residue 2.
View Article and Find Full Text PDFDalton Trans
November 2024
School of Chemistry, University of Leicester, University Road, Leicester, LE1 7RH, UK.
A diprotic bis(β-thioketoimine) ligand precursor featuring a flexible 4,4'-methylbis(aniline) linker, H2, was synthesised treatment of the corresponding bis(β-ketoimine) with Lawesson's reagent. Lithiation of H2 and coordination with one equivalent of d-block metal(II) chlorides MCl(THF) (M = Fe, Co and Zn) yielded a corresponding series of homoleptic dinuclear complexes, [M(μ-2)]. X-ray diffraction analysis reveals a tetrahedral geometry for the two metals and a double-stranded helicate structure arising from inter-strand face-face π-stacking.
View Article and Find Full Text PDFChem Asian J
December 2024
Department of Chemistry, Birla Institute of Technology and Science, Pilani, Rajasthan, 333031, India.
A direct ortho-Csp-H acylalkylation of 2-aryl-2,3-dihydrophthalazine-1,4-diones with unsubstituted and substituted allyl alcohols is achieved in high yields through Rh(III)-catalyzed C-H bond activation process. The additional employment of Cu(OAc)⋅2HO as an oxidant detour the reaction towards [4+1] annulation, producing 13-(2-oxopropyl)-13H-indazolo[1,2-b]phthalazine-6,11-diones in moderate yields. Interestingly, Lawesson's reagent-mediated conditions accomplished intramolecular cyclization in ortho-(formylalkylated)-2,3-dihydrophthalazine-1,4-diones to produce diazepino[1,2-b]phthalazine-diones in moderate yields.
View Article and Find Full Text PDFEur J Med Chem
October 2024
Department of Chemistry, Radhabai Kale Mahila Mahavidyalay, Ahmednagar, Maharashtra, 414001, India. Electronic address:
A novel series of substituted thiazolo[5,4-b]pyridine analogues were rationally designed and synthesized via a multi-step synthetic pathway, including Suzuki cross-coupling reaction. The anticancer activity of all forty-five synthesized derivatives was evaluated against HCC827, H1975, and A549 cancer cell lines utilizing the standard MTT assay. A significant number of the thiazolo[5,4-b]pyridine derivatives exhibited potent anticancer activity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!