Micromechanical Force Sensor Using the Stress-Impedance Effect of Soft Magnetic FeCuNbSiB.

Sensors (Basel)

Division for the Establishment of Frontier Sciences, Organization for Advanced Studies, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan.

Published: November 2021

By using the stress-impedance (SI) effect of a soft magnetic amorphous FeCuNbSiB alloy, a micromachined force sensor was fabricated and characterized. The alloy was used as a sputtered thin film of 500 nm thickness. To clarify the SI effect in the used material as a thin film, its magnetic and mechanical properties were first investigated. The stress dependence of the magnetic permeability was shown to be caused by the used transducer effect. The sputtered thin film also exhibited a large yield strength of 983 GPa. Even though the fabrication technology for the device is very simple, characterization revealed a gauge factor (GF) of 756, which is several times larger than that achieved with conventional transducer effects, such as the piezoresistive effect. The fabricated device shows great application potential as a tactile sensor.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8621941PMC
http://dx.doi.org/10.3390/s21227578DOI Listing

Publication Analysis

Top Keywords

thin film
12
force sensor
8
stress-impedance soft
8
soft magnetic
8
sputtered thin
8
micromechanical force
4
sensor stress-impedance
4
magnetic
4
magnetic fecunbsib
4
fecunbsib stress-impedance
4

Similar Publications

Comparison of Hydrogen Bonded Organic Framework with Reduced Graphene Oxide-Pd Based Nanocatalyst: Which One Is More Efficient for Entrapment of Nitrophenol Pollutants?

Langmuir

January 2025

Prof. Rashidi Laboratory of Organometallic Chemistry & Material Chemistry, Department of Chemistry, College of Science, Shiraz University, Shiraz, 7194684795, Iran.

In this study, a Pd nanoparticles@hydrogen-bonded organic framework (Pd NPs@HOF) thin film was fabricated at the toluene-water interface. The HOF was formed through the interaction of trimesic acid (TMA) and melamine (Mel) in the water phase, while Pd(0) was produced from the reduction of [PdCl(cod)] in the organic phase. The as-synthesized Pd NPs@HOF thin film was demonstrated to be an effective catalyst for the selective reduction of -nitrophenol and -nitrophenol to -aminophenol and -aminophenol.

View Article and Find Full Text PDF

Rapid validation of newly predicted materials through autonomous synthesis requires real-time adaptive control methods that exploit physics knowledge, a capability that is lacking in most systems. Here, we demonstrate an approach to enable real-time control of thin film synthesis by combining optical diagnostics with a Bayesian state estimation method. We developed a physical model for film growth and applied the direct filter (DF) method for real-time estimation of nucleation and growth rates during pulsed laser deposition (PLD).

View Article and Find Full Text PDF

A Zn-doped SbTe flexible thin film with decoupled Seebeck coefficient and electrical conductivity band engineering.

Chem Sci

January 2025

Shenzhen Key Laboratory of Advanced Thin Films and Applications, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Physics and Optoelectronic Engineering, Shenzhen University Shenzhen Guangdong 518060 China

SbTe-based flexible thin films can be utilized in the fabrication of self-powered wearable devices due to their huge potential in thermoelectric performance. Although doping can significantly enhance the power factor value, the process of identifying suitable dopants is typically accompanied by numerous repeating experiments. Herein, we introduce Zn doping into thermally diffused p-type SbTe flexible thin films with a candidate dopant validated using the first-principles calculations.

View Article and Find Full Text PDF

This study presents an innovative glucose detection platform, featuring a highly sensitive, non-enzymatic glucose sensor. The sensor integrates nickel nanowires and a graphene thin film deposited on the gate region of an extended-gate electric double-layer field-effect transistor (EGEDL-FET). This unique combination of materials and device structure enables superior glucose sensing performance.

View Article and Find Full Text PDF

A soda lime glass substrate is used for fabricating CuZnSnS (CZTS) thin films using copper (II) sulfide (CuS), zinc sulfide (ZnS), and tin sulfide (SnS) targets using an advanced co-sputtering deposition process. Following that, the films are annealed at 470 °C without sulfur (S). An algorithm based on the deposition rate of the previously specified targets set the co-sputtering condition, which maintains a deposition pressure of 5, 10, 15, and 20 mTorr.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!