Development of an Optical Method to Monitor Nitrification in Drinking Water.

Sensors (Basel)

Scarce Resources and Circular Economy (ScaRCE), UniSA STEM, University of South Australia, Adelaide 5095, Australia.

Published: November 2021

Nitrification is a common issue observed in chloraminated drinking water distribution systems, resulting in the undesirable loss of monochloramine (NHCl) residual. The decay of monochloramine releases ammonia (NH), which is converted to nitrite (NO) and nitrate (NO) through a biological oxidation process. During the course of monochloramine decay and the production of nitrite and nitrate, the spectral fingerprint is observed to change within the wavelength region sensitive to these species. In addition, chloraminated drinking water will contain natural organic matter (NOM), which also has a spectral fingerprint. To assess the nitrification status, the combined nitrate and nitrite absorbance fingerprint was isolated from the total spectra. A novel method is proposed here to isolate their spectra and estimate their combined concentration. The spectral fingerprint of pure monochloramine solution at different concentrations indicated that the absorbance difference between two concentrations at a specific wavelength can be related to other wavelengths by a linear function. It is assumed that the absorbance reduction in drinking water spectra due to monochloramine decay will follow a similar pattern as in ultrapure water. Based on this criteria, combined nitrate and nitrite spectra were isolated from the total spectrum. A machine learning model was developed using the support vector regression (SVR) algorithm to relate the spectral features of pure nitrate and nitrite with their concentrations. The model was used to predict the combined nitrate and nitrite concentration for a number of test samples. Out of these samples, the nitrified sample showed an increasing trend of combined nitrate and nitrite productions. The predicted values were matched with the observed concentrations, and the level of precision by the method was ± 0.01 mg-N L. This method can be implemented in chloraminated distribution systems to monitor and manage nitrification.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8618176PMC
http://dx.doi.org/10.3390/s21227525DOI Listing

Publication Analysis

Top Keywords

nitrate nitrite
20
drinking water
16
combined nitrate
16
spectral fingerprint
12
chloraminated drinking
8
distribution systems
8
nitrite nitrate
8
monochloramine decay
8
isolated total
8
nitrite
7

Similar Publications

Sponge exhalent metabolites influence coral reef picoplankton dynamics.

Sci Rep

December 2024

Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Falmouth, USA.

Coral reef sponges efficiently take up particulate and dissolved organic matter (DOM) from the water column and release compounds such as nucleosides, amino acids, and other dissolved metabolites to the surrounding reef via their exhalent seawater, but the influence of this process on reef picoplankton and nutrient processing is relatively unexplored. Here we examined the impact of sponge exhalent on the reef picoplankon community and subsequent alterations to the reef dissolved metabolite pool. We exposed reef picoplankton communities to a sponge exhalent water mixture (Niphates digitalis and Xestospongia muta) or filtered reef seawater (control) in closed, container-based dark incubations.

View Article and Find Full Text PDF

Deciphering the key role of biofilm and mechanisms in high-strength nitrogen removal within the anammox coupled partial S-driven autotrophic denitrification system.

Bioresour Technol

December 2024

Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, China; Engineering Research Centre of Chemical Pollution Control, Ministry of Education, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, China. Electronic address:

Anammox coupled partial S-driven autotrophic denitrification (PSAD) technology represents an innovative approach for removing nitrogen from wastewater. The research highlighted the crucial role of biofilm on sulfur particles in the nitrogen removal process. Further analysis revealed that sulfur-oxidizing bacteria (SOB) are primarily distributed in the inner layer of the biofilm, while anammox bacteria (AnAOB) are relatively evenly distributed in inner and outer layers, with Thiobacillus and Candidatus Brocadia being the dominant species, respectively.

View Article and Find Full Text PDF

Arsenic (As) enrichment in groundwater stems from natural and hydrogeochemical factors, leading to geological contamination. Groundwater and surface water are interconnected, allowing As migration and surface water contamination. The As contamination poses health risks through contaminated water consumption.

View Article and Find Full Text PDF

Multiple sclerosis (MS) is a chronic neurological condition resulting in decreased aerobic capacity (peak VO). The hemodynamic responses to peak exercise in MS are unknown. Further, it is unknown if the hemodynamic responses are due to disease or fitness.

View Article and Find Full Text PDF

Toxic Plants and Their Impact on Livestock Health and Economic Losses: A Comprehensive Review.

J Toxicol

December 2024

Ambo University, Guder Mamo Mezemir Campus, Department of Veterinary Science, West Shewa Zone, Oromia, Ethiopia.

Plants are important components in sustaining the life of humans and animals, balancing ecosystems, providing animal feed and edible food for human consumption, and serving as sources of traditional and modern medicine. However, plants can be harmful to both animals and humans when ingested, leading to poisoning regardless of the quantity consumed. This presents significant risks to livestock health and can impede economic growth.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!