The use of composite films with semiconductor behavior is an alternative to enhance the efficiency of optoelectronic devices. Composite films of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) and metalloporphines (MPs; M = Co, Cu, Pd) have been prepared by spin-coating. The PEDOT:PSS-MP films were treated with isopropanol (IPA) vapor to modify the polymer structure from benzoid to quinoid. The quinoid structure promotes improvements in the optical and electrical behavior of films. The composite films' morphology and structure were characterized using infrared and Raman spectroscopy, scanning electron microscopy (SEM), and atomic force microscopy (AFM). Composite films were analyzed for their optical behavior by ultraviolet-visible spectroscopy: at λ < 450 nm, the films become transparent, indicating the capacity to be used as transparent electrodes in optoelectronic devices. At λ ≥ 450 nm, the absorbance in the films increased significantly. The CoP showed an 8 times larger current density compared to the CuP. A light induced change in the J-V curves was observed, and it is larger for the CoP. The conductivity values yielded between 1.23 × 10 and 1.92 × 10 Scm and were higher in forward bias.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8622017 | PMC |
http://dx.doi.org/10.3390/polym13224008 | DOI Listing |
Food Chem X
January 2025
Key Laboratory of Ministry of Agriculture for Germplasm Resources Conservation and Utilization of Cassava, Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China.
This study aimed to prepare a composite film by blending cross-linked tapioca starch (CLTS) with sodium alginate (SA), silver nanoparticles (AgNPs), and ZnO nanoparticles (ZnOs). The effects of SA, AgNPs, and ZnOs at different concentrations (1-3 wt%) on the mechanical properties, optical properties, thermal stability, and antibacterial activity of cross-linked starch films were also investigated. The structures of the films were examined by Fourier transform infrared spectroscopy and X-ray diffraction.
View Article and Find Full Text PDFNano Converg
January 2025
Department of Physics, Yonsei University, Seoul, 03722, Republic of Korea.
Two-dimensional halide perovskites are attracting attention due to their structural diversity, improved stability, and enhanced quantum efficiency compared to their three-dimensional counterparts. In particular, Dion-Jacobson (DJ) phase perovskites exhibit superior structural stability compared to Ruddlesden-Popper phase perovskites. The inherent quantum well structure of layered perovskites leads to highly anisotropic charge transport and optical properties.
View Article and Find Full Text PDFNano Lett
January 2025
Department of Physics, Centre for Materials Science and Nanotechnology, University of Oslo, PO Box 1048 Blindern, N-0316 Oslo, Norway.
Polymorphism determines significant variations in materials' properties by lattice symmetry variation. If they are stacked together into multilayers, polymorphs may work as an alternative approach to the sequential deposition of layers with different chemical compositions. However, selective polymorph crystallization during conventional thin film synthesis is not trivial; changes of temperature or pressure when switching from one polymorph to another during synthesis may cause degradation of the structural quality.
View Article and Find Full Text PDFSingle use plastics are a leading source of microplastics that have been detected along the food chain. This study evaluated the potential of starch (ST) and carrageenan (CRG) in packaging film formulation. CRG isolated from the seaweed (SW) was blended with starch and cast to obtain films whose moisture content (MC), total soluble matter (TSM), degree of solubility (DS), water vapor permeability (WVP), opacity (O), contact angles (CA), moisture absorption (MA), and percent elongation (PE) were evaluated.
View Article and Find Full Text PDFSci Technol Adv Mater
January 2025
Magnetic Functional Device Group, Research Center for Magnetic and Spintronic Materials (CMSM), National Institute for Materials Science (NIMS), Tsukuba, Japan.
We demonstrate high-throughput evaluation of the half-metallicity of CoMnSi Heusler alloys by spin-integrated hard X-ray photoelectron spectroscopy (HAXPES) of composition-spread films performed with high-brilliance synchrotron radiation at NanoTerasu, which identifies the optimum composition showing the best half-metallicity. Co Mn Si composition-spread thin films for = 10-40% with a thickness of 30 nm are fabricated on MgO(100) substrates using combinatorial sputtering technique. The 2-ordering and (001)-oriented epitaxial growth of CoMnSi are confirmed by X-ray diffraction for = 18-40%.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!